Free Access
Issue
Metall. Res. Technol.
Volume 117, Number 1, 2020
Article Number 102
Number of page(s) 9
DOI https://doi.org/10.1051/metal/2019047
Published online 13 January 2020
  1. S.K. Biswal, Report on maximise the iron values from low and lean grade iron ore resources, Steel World, 41–45, (2018) Available from http://steelworld.com/newsletter/2018/jan18/technology-Dr-S-K-Biswal.pdf as on 07.07.2018 [Google Scholar]
  2. Y. Chokshi, S.K. Dutta, Processing of low grade iron ore fines and utilisation by pelletization, Iron Steel Rev. 58(7), 194–200 (2014), Research gate publication at https://www.researchgate.net/publication/309927454 as on 1.07.2018 [Google Scholar]
  3. S. Subramanian, K.A. Natarajan, Flocculation, filtration and selective flocculation studies on hematite ore fines using starch, Miner. Eng. 4(5–6), 587–598 (1991) [CrossRef] [Google Scholar]
  4. A.K. Mukherjee, J.S. Thella, D. Makhija, A. Patra, M. Manna, T.K. Ghosh, Process to recover iron values from high-alumina Indian iron ore slime – a bench-scale study, Miner. Process. Extr. Metall. Rev. 36, 39–44 (2015) [CrossRef] [Google Scholar]
  5. J. Drzymala, D.W. Fuerstenau, Selective flocculation of hematite in the hematite-quartz-ferric ion-polyacrylic acid system, Part 1, Activation and deactivation of quartz, Int. J. Miner. Process. 8, 265–277 (1981) [Google Scholar]
  6. S.A. Ravishankar, Pradip, N.K. Khosla, Selective flocculation of iron oxide from its synthetic mixtures with clays: A comparison of polyacrylic acid and starch polymers, Int. J. Miner. Process. 43, 235–247 (1995) [Google Scholar]
  7. B. Gururaj, J.P. Sharma, A. Baldawa, S.C.D. Arora, N. Prasad, A.K. Biswas, Dispersion-flocculation studies on hematite-clay systems, Int. J. Miner. Process. 11, 285–302 (1983) [Google Scholar]
  8. D.F. Bagster, J.D. McIlvenny, Studies in the selective flocculation of hematite from gangue using high molecular weight polymers, Part 1: Chemical factors, Int. J. Miner. Process. 14, 1–20 (1985) [Google Scholar]
  9. D.F. Bagster, Studies in the selective flocculation of hematite from gangue using high molecular weight polymers. Part 2: Physical factors, Int. J. Miner. Process. 14, 21–32 (1985) [Google Scholar]
  10. P.K. Weissenborn, L.J. Warren, J.G. Dunn, Optimisation of selective flocculation of ultrafine iron ore, Int. J. Miner. Process. 42, 191–213 (1994) [Google Scholar]
  11. L. Panda, S.K., Biswal, V. Tathavadkar, Beneficiation of synthetic iron ore kaolinite mixture using selective flocculation, J. Miner. Mater. Charact. Eng. 9, 973–983 (2010) [Google Scholar]
  12. L. Panda, S.K. Biswal, P.K. Banerjee, R. Venugopal, N.R. Mandre, Performance evaluation for selectivity of the flocculant on hematite in selective flocculation technique, Int. J. Miner. Metall. Mater. 20(12), 1123–1129 (2013) [CrossRef] [Google Scholar]
  13. L. Panda, P.K. Banerjee, S.K, Biswal, R. Venugopal, N.R. Mandre, Artificial neural network approach to assess selective flocculation on hematite and kaolinite, Int. J. Miner. Metall. Mater. 21, 637–646 (2014) [CrossRef] [Google Scholar]
  14. L. Panda, S.K. Biswal, R. Venugopal, N.R. Mandre, Recovery of ultra-fine iron ore from iron ore tailings, Trans. Indian Inst. Met. 71(2), 463–468 (2018) [CrossRef] [Google Scholar]
  15. H.K. Rao, K.S. Narsimhan, Selective flocculation applied to Barsua iron ore tailings, Int. J. Miner. Process. 14, 67–75 (1985) [Google Scholar]
  16. B.P. Singh, R. Singh, Investigation on the Effect of ultrasonic pretreatment on selective separation of iron values from iron ore tailings by flocculation, Sep. Sci. Technol. 32(5), 993–1002 (1997) [Google Scholar]
  17. H.A.M. Ahmed, A.A. El-Midany, N. Abdel-Khalek, Statistical optimisation of some parameters affecting flocculation of Egyptian iron ore, Miner. Process. Extr. Metall. IMM Trans. Sect. C 116(4), 239–244 (2007) [CrossRef] [Google Scholar]
  18. M.I. Abro, Up-gradation of Dilband iron ore, PhD Thesis, Mehran University of Engineering and Technology, Jamshoro, 2009 [Google Scholar]
  19. V. Tammishetti, D. Kumar, B. Rai, V. Shukla, A.S. Patra, D.P. Chakraborty, Selective flocculation of iron ore slimes: Results of successful pilot plant trials at Tata Steel, Noamundi, Trans. Indian Inst. Met., 70(2), 411–419 (2017) [CrossRef] [Google Scholar]
  20. B. Das, P.K. Naik, Electro kinetic and flotation studies of hematite using di (2-ethyl hexyl) phosphoric acid, J. South Afr. Inst. Min. Metall., 397–402 (2003) [Google Scholar]
  21. D.O. Hummel, Atlas of plastics additives: Analysis by spectrometric methods, Springer-Verlag, Berlin, Heidelberg, New York, 2002, ISBN: 3-540-4241 4-8 [CrossRef] [Google Scholar]
  22. B. Kar, H. Sahoo, S.S. Rath, B. Das, Investigations on different starches as depressants for iron ore flotation, Miner. Eng. 49, 1–6 (2013) [CrossRef] [Google Scholar]
  23. B. Stuart, Infrared spectroscopy: Fundamentals and applications, John Wiley & Sons, Ltd., 2004, ISBNs: 0-470-85427-8 (HB); 0-470-85428-6 (PB) [CrossRef] [Google Scholar]
  24. S. Prakash, B. Das, Surface properties of Indian hematite and bauxite and their coating mechanism with colloidal magnetite, J. Sci. Ind. Res. 58, 436–442 (1999) [Google Scholar]
  25. R.H. Vempati, R.H. Loeppert, H. Sittertz-Bhatkar, R.C. Burghardt, Clay Clay Miner. 38(3), 294–298 (1990) [CrossRef] [Google Scholar]
  26. S. Pavlovic, P.R.G. Brandao, Adsorption of starch, amylose, amylopectin and glucose monomer and their effect on the flotation of hematite and quartz, Miner. Eng. 16, 1117–1122 (2003) [CrossRef] [Google Scholar]
  27. J.L. Rendon, C.J. Serna, Ir spectra of powder hematite: Effects of particle size and shape, Clay Miner. 16, (1981) 375–381 [Google Scholar]
  28. P.K. Weissenborn, L.J. Warren, J.G. Dunn, Selective flocculation of ultrafine iron ore. 1. Mechanism of adsorption of starch onto hematite, Colloids Surf. A Physicochem. Eng. Asp. 99, 11–27 (1995) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.