Free Access
Issue
Metall. Res. Technol.
Volume 117, Number 1, 2020
Article Number 109
Number of page(s) 9
DOI https://doi.org/10.1051/metal/2020003
Published online 11 February 2020
  1. J.G. Wuenning, Regenerative burners for heat treating furnaces, in 8th European conference on industrial furnaces and boilers (INFUB) 25, 2008, pp. 28. [Google Scholar]
  2. W. Trinks, M.H, Mawhinney, R.A. Shannon, J.R. Garvey, R.J. Reed, Industrial furnaces, Wiley, Hoboken, 2004, pp. 185–193. [Google Scholar]
  3. M.A. Irfan, W. Chapman, Thermal stresses in radiant tubes due to axial, circumferential and radial temperature distributions, Appl. Therm. Eng. 29, 1913–1920 (2009) [Google Scholar]
  4. N. Schmitz, M. Hellenkamp, H. Pfeifer, E. Cresci, J. Wünning, M. Schönfelder, Radiant tube life improvement for vertical galvanizing lines, presented at the 10th International Conference on Zinc and Zinc Alloy Coated Steel, Toronto, 2015 [Google Scholar]
  5. A. Ul-Hamid, H.M. Tawancy, A.R.I. Mohammed, N.M. Abbas, Failure analysis of furnace radiant tubes exposed to excessive temperature, Eng. Fail. Anal. 13, 1005–1021 (2006) [Google Scholar]
  6. Z.W. Kang, T.C. Chen, Three-dimensional temperature distributions of strip in continuous annealing line, Appl. Therm. Eng. 58, 241–251 (2013) [Google Scholar]
  7. N. Depree, J. Sneyd, S. Taylor, M.P. Taylor, J.J.J. Chen, S. Wang, M. O’Connor, Development and validation of models for annealing furnace control from heat transfer fundamentals, Comp. Chem. Eng. 34, 1849–1853 (2010) [CrossRef] [Google Scholar]
  8. A. Pernía-Espinoza, M. Castejón-Limas, A. González-Marcos, V. Lobato-Rubio, Steel annealing furnace robust neural network model, Ironmaking Steelmaking 32, 418–426 (2005) [CrossRef] [Google Scholar]
  9. S. Li, Q. Chen, G.B. Huang, Dynamic temperature modeling of continuous annealing furnace using GGAP-RBF neural network, Neurocomputing 69, 523–536 (2006) [Google Scholar]
  10. M. Niederer, S. Strommer, A. Steinboeck, A. Kugi, A simple control-oriented model of an indirect-fired strip annealing furnace, Int. J. Heat Mass Transf. 78, 557–570 (2014) [Google Scholar]
  11. Y.C. Tian, C.-H. Hou, F. Gao, Mathematical model of a continuous galvanizing annealing furnace, Dev. Chem. Eng. Miner. Process. 8, 359–374 (2000) [CrossRef] [Google Scholar]
  12. M.M. Prieto, F.J. Fernández, J.L. Rendueles, Development of stepwise thermal model for annealing line heating furnace, Ironmaking Steelmaking 32, 165–170 (2005) [CrossRef] [Google Scholar]
  13. T.C. Chen, C.H. Ho, J.C. Lin, L.W. Wu, 3-D temperature and stress distributions of strip in preheating furnace of continuous annealing line, Appl. Therm. Eng. 30, 1047–1057 (2010) [Google Scholar]
  14. S.R. Carvalho, T.H. Ong, G. Guimarães, A mathematical and computational model of furnaces for continuous steel strip processing, J. Mater. Process. Technol. 178, 379–387 (2006) [CrossRef] [Google Scholar]
  15. H. Wu, R. Speets, F. Heeremans, O. Ben Driss, R. van Buren, Nonlinear model predictive control of throughput and strip temperature for continuous annealing line, Ironmaking Steelmaking 42, 570–578 (2015) [CrossRef] [Google Scholar]
  16. S. Zareba, A. Wolff, M. Jelali, Mathematical modelling and parameter identification of a stainless steel annealing furnace, Simul. Model. Pract. Theory 60, 15–39 (2016) [Google Scholar]
  17. M. McGuinness, S. Taylor, Strip temperature in a metal coating line annealing furnace, Technical report, Mathematics in Industry, 2004, http://www.math.auckland.ac.nz/deptdb/dept_reports/532.pdf [Google Scholar]
  18. C.D. Wen, Investigation of steel emissivity behaviors: examination of multispectral radiation thermometry (MRT) emissivity models, Int. J. Heat Mass Transf. 53, 2035–2043 (2010) [Google Scholar]
  19. F. Wan, Y. Wang, S. Qin, Modeling of strip heating process in vertical continuous annealing furnace, J. Iron Steel Res. Int. 19, 29–36 (2012) [CrossRef] [Google Scholar]
  20. F. Incropera, D.P. Dewitt, T.L. Bergman, A.S. Lavine, Fundamentals of heat and mass transfer, Hoboken, Wiley, USA, 2007, p. 816 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.