Free Access
Issue
Metall. Res. Technol.
Volume 117, Number 1, 2020
Article Number 101
Number of page(s) 7
DOI https://doi.org/10.1051/metal/2019067
Published online 03 January 2020
  1. R.R. Boyer, Aerospace applications of beta titanium alloys, JOM, 20–23 (1994) [CrossRef] [Google Scholar]
  2. H. Mishra, P. Ghosal, T.K. Nandy, et al., Influence of Fe and Ni on creep of near α–Ti alloy IMI834, Mater. Sci. Eng. A, 222–231 (2005) [CrossRef] [Google Scholar]
  3. R.W. Hayes, G.B. Viswanathan, M.J. Mills, Creep behavior of Ti-6Al-2Sn-4Zr-2Mo: I. The effect of nickel on creep deformation and microstructure, Acta Mater 50, 4953–4963 (2002) [Google Scholar]
  4. W.J. Kroll, The production of ductile titanium [J], Trans Electrochem Soc 78, 35–47 (1940) [CrossRef] [Google Scholar]
  5. L. Liang, D. Liu, H. Wan, et al., Removal of chloride impurities from titanium sponge by vacuum distillation[J], Vacuum 152, 166–172 (2018) [Google Scholar]
  6. C.R.V.S. Nagesh, C.S. Ramachandran, R.B. Subramanyam, Methods of titanium sponge production, Trans. Indian Inst. Met 61, 341–348 (2008) [CrossRef] [Google Scholar]
  7. I.F. Chervonyj, D.O. Listopad, Thermodynamic laws of impuries in the titanium sponge inflow during its production, Acta Mech Slovaca 13, 40–47 (2009) [CrossRef] [Google Scholar]
  8. L. Takahiro, N. Nobuo, A. Tadao, Establishment of the high purity titanium billet production method using titanium sponge produced by the Kroll process, Proceedings of the 13th World Conference on Titanium, TMS, San Diego, America, 2016, pp. 103–105 [Google Scholar]
  9. D.W. Lee, Method of reforming inner surface of reactor for manufacturing sponge titanium having high purity, Korea, 20100119668A[P]. 2010-11-10 [Google Scholar]
  10. J.C. Lee, H.S. Sohn, J.Y. Jung, Effect of TiCl4 feeding rate on the formation of titanium sponge in the Kroll process, Korean J. Met Mater 13, 40–47 (2012) [Google Scholar]
  11. C.R.V.S. Nagesh, C.S. Rao, N.B. Ballal, et al., Mechanism of titanium sponge formation in the Kroll reduction reactor, Metall. Mater. Trans B 35B, 65–74 (2004) [CrossRef] [Google Scholar]
  12. A.R. Miedema, P.F. Chatel, F.R. Boer, Cohesion in alloys-fundamentals of a semi-empirical model, Physica 100B, 1–28 (1980) [Google Scholar]
  13. G.W. Toop, Extented Miedema’s model for solid solution formation of ternary alloys, Tran. ALME 233, 850–855 (1965) [Google Scholar]
  14. F.R. Boer, R. Boom, A.R. Miedema, Enthalpies of formation of liquid and solid binary alloys based on 3d metals, Physica 101B, 294–319 (1980) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.