Free Access
Metall. Res. Technol.
Volume 117, Number 1, 2020
Article Number 110
Number of page(s) 12
Published online 14 February 2020
  1. F. Hernández, G. Plascencia, K. Koch, Rail base corrosion problem for North American transit systems[J], Eng. Fail. Anal. 16(1), 281–294 (2009) [Google Scholar]
  2. C. Sims, Relative deoxidizing powers of some deoxidizing for steel[J], Mater. Trans. 185(11), 814–825 (1949) [Google Scholar]
  3. Y. Ito, N. Masumitsu, K. Matsubara, Formation of manganese sulfide in steel[J], Trans. Iron Steel Inst. Jpn. 21(7), 477–484 (1981) [CrossRef] [Google Scholar]
  4. K. Oikawa, H. Ohtani, K. Ishida, T. Nishizawa, The control of the morphology of MnS inclusions in steel during solidification[J], ISIJ Int. 35(4), 402–408 (1995) [CrossRef] [Google Scholar]
  5. C. Liu, M. Bassim, S. Lawrence, Evaluation of fatigue-crack initiation at inclusions in fully pearlitic steels[J], Mater. Sci. Eng.: A. 167(1), 107–113 (1993) [CrossRef] [Google Scholar]
  6. M. Wakoh, T. Sawai, S. Mizoguchi, Effect of S content on the MnS precipitation in steel with oxide nuclei[J], ISIJ Int. 36(8), 1014–1021 (1996) [CrossRef] [Google Scholar]
  7. H. Yaguchi, Manganese sulfide precipitation in low-carbon resulfurized free-machining steel[J], Metall. Trans. A. 17(11), 2080–2083 (1986) [CrossRef] [Google Scholar]
  8. B. Garbarz, J. Marcisz, J. Wojtas, TEM analysis of fine sulphides dissolution and precipitation in steel[J], Mater. Chem. Phys. 81(2), 486–489 (2003) [Google Scholar]
  9. M. Li, F. Wang, C. Li, Z. Yang, Q. Meng, S. Tao, Effects of cooling rate and Al on MnS formation in medium-carbon non-quenched and tempered steels[J], Int. J. Miner. Metall. Mater. 22(6), 589–597 (2015) [CrossRef] [Google Scholar]
  10. H. Goto, K. Miyazawa, W. Yamada, K. Tanaka, Effect of cooling rate on composition of oxides precipitated during solidification of steels[J], ISIJ Int. 35(6), 708–714 (1995) [CrossRef] [Google Scholar]
  11. T. Baker, J. Charles, Type II manganese sulphides: Their deformation and effect on steel fracture[J], J. Iron Steel Inst. 211(3), 187–192 (1973) [Google Scholar]
  12. K. Matsubara, On the behaviors of the precipitated sulfide inclusions in solid steel[J], Tetsu-to-Hagane 51(12), 2220–2232 (1965) [CrossRef] [Google Scholar]
  13. M. Nishida, T. Kato, T. Tanaka, Spheroidization of manganese sulfide inclusion during heating and its effect on hydrogen induced cracking in rolled steel[J], Tetsu-to-Hagane 67(9), 1533–1541 (1981) [CrossRef] [Google Scholar]
  14. R. Heckel, R. Degregorio, The growth and shrinkage rates of second-phase particles of various size distributions[J], AIME Met. Soc. Trans. 233(11), 2001–2011 (1965) [Google Scholar]
  15. F. Nichols, On the spheroidization of rod-shaped particles of finite length[J], J. Mater. Sci. 11(6), 1077–1082 (1976) [Google Scholar]
  16. A. Segal, J. Charles, Influence of particle size on deformation characteristics of manganese sulphide inclusions in steel[J], Met. Technol. 4(1), 177–182 (1977) [CrossRef] [Google Scholar]
  17. D. Gnanamuthu, T. Kattamis, M. Flemings, R. Mehrabian, Effect of homogenization on sulfide inclusions in ferrous alloys[J], Metall. Trans. 5(12), 2557–2567 (1974) [CrossRef] [Google Scholar]
  18. X. Shao, X. Wang, M. Jiang, W. Wang, F. Huang, Effect of heat treatment conditions on shape control of large-sized elongated MnS inclusions in resulfurized free-cutting steels[J], ISIJ Int. 51(12), 1995–2001 (2011) [CrossRef] [Google Scholar]
  19. H. Kim, H. Lee, K. Oh, Precipitation behavior of MnS on oxide inclusions in Si/Mn deoxidized steel[J], Met. Mater. 6(4), 305–310 (2000) [CrossRef] [Google Scholar]
  20. Y. Ren, Y. Wang, S. Li, L. Zhang, X. Zuo, S. Lekakh, K. Peaslee, Detection of non-metallic inclusions in steel continuous casting billets[J], Metall. Mater. Trans. B. 45(4), 1291–1303 (2014) [CrossRef] [Google Scholar]
  21. K. Fang, R. Ni, Research on determination of the rare-earth content in metal phases of steel[J], Metall. Trans. A. 17(2), 315–323 (1986) [CrossRef] [Google Scholar]
  22. H. Kim, H. Lee, K. Oh, MnS precipitation in association with manganese silicate inclusions in Si/Mn deoxidized steel[J], Metall. Mater. Trans. A. 32(6), 1519–1525 (2001) [CrossRef] [Google Scholar]
  23. C.K.L. Davies, P. Nash, R.N. Stevens, The effect of volume fraction of precipitate on Ostwald ripening[J], Acta Metall. 28(2), 179–189 (1980) [CrossRef] [Google Scholar]
  24. H. Liu, D. Hu, J. Fu, Analysis of MnS inclusions formation in resulphurised steel via modeling and experiments[J], Materials 12(12), 2028 (2019) [CrossRef] [Google Scholar]
  25. R. Diederichs, W. Bleck, Modelling of manganese sulphide formation during solidification, part I: Description of MnS formation parameters[J], Steel Res. Int. 77(3), 202–209 (2006) [CrossRef] [Google Scholar]
  26. Y. Tanaka, F. Pahlevani, S. Moon, In situ characterisation of MnS precipitation in high carbon steel[J], Sci Rep. 9(1), 1–12 (2019) [CrossRef] [PubMed] [Google Scholar]
  27. T. Battle, R. Pehlke, Mathematical modeling of microsegregation in binary metallic alloys[J], Metall. Trans. B. 21(2), 357–375 (1990) [CrossRef] [Google Scholar]
  28. J. Dupont, A. Marder, M. Notis, C. Robino, Solidification of Nb-bearing superalloys: Part II. Pseudoternary solidification surfaces[J], Metall. Mater. Trans. A. 29(11), 2797–2806 (1998) [CrossRef] [Google Scholar]
  29. I. Ohnaka, Mathematical analysis of solute redistribution during solidification with diffusion in solid phase[J], Trans. Iron Steel Inst. Jpn. 26(12), 1045–1051 (1986) [CrossRef] [Google Scholar]
  30. V. Voller, A semi-analytical model of microsegregation in a binary alloy[J], J. Cryst. Growth 197(1), 325–332 (1999) [Google Scholar]
  31. V. Voller, C. Beckermann, A unified model of microsegregation and coarsening[J], Metall. Mater. Trans. A. 30(8), 2183–2189 (1999) [CrossRef] [Google Scholar]
  32. V. Voller, C. Beckermann, Approximate models of microsegregation with coarsening[J], Metall. Mater. Trans. A. 30(11), 3016–3019 (1999) [CrossRef] [Google Scholar]
  33. D. Xu, A unified microscale-parameter approach to solidification-transport phenomena-based macrosegregation modeling for dendritic solidification: Part I. Mixture average-based analysis[J], Metall. Mater. Trans. B. 32(6), 1129–1141 (2001) [CrossRef] [Google Scholar]
  34. D. Xu, A unified microscale parameter approach to solidification-transport process-based macrosegregation modeling for dendritic solidification: Part II. Numerical example computations[J], Metall. Mater. Trans. B. 33(3), 451–463 (2002) [CrossRef] [Google Scholar]
  35. S. Kobayashi, A mathematical model for solute redistribution during dendritic solidification[J], Trans. Iron Steel Inst. Jpn. 28(7), 535–542 (1988) [CrossRef] [Google Scholar]
  36. L. Nastac, D. Stefanescu, An analytical model for solute redistribution during solidification of planar, columnar, or equiaxed morphology[J], Metall. Trans. A. 24(9), 2107–2118 (1993) [CrossRef] [Google Scholar]
  37. S. Choudhary, A. Ghosh, Mathematical model for prediction of composition of inclusions formed during solidification of liquid steel[J], ISIJ Int. 49(12), 1819–1827 (2009) [CrossRef] [Google Scholar]
  38. T. Clyne, W. Kurz, Solute redistribution during solidification with rapid solid state diffusion[J], Metall. Trans. A. 12(6), 965–971 (1981) [CrossRef] [Google Scholar]
  39. M. Flemings, Behavior of metal alloys in the semisolid state[J], Metall. Trans. B. 22(3), 269–293 (1991) [CrossRef] [Google Scholar]
  40. Y. Won, B. Thomas, Simple model of microsegregation during solidification of steels[J], Metall.Mater. Trans. A. 32(7), 1755–1767 (2001) [CrossRef] [Google Scholar]
  41. Y. Wang, J. Yang, Y. Bao, Characteristics of BN precipitation and growth during solidification of BN free-machining steel[J], Metall. Mater. Trans. B. 45(6), 2269–2278 (2014) [CrossRef] [Google Scholar]
  42. Y. Ueshima, K. Isobe, S. Mizoguchi, H. Maede, H. Kajioka, Analysis of the rate of crystallization and precipitation of MnS in the resulphurized free-cutting steel[J], Tetsu-to-Hagane 74(3), 465–472 (1988) [CrossRef] [Google Scholar]
  43. Y. Wang, J. Yang, X. Xin, R. Wang, L. Xu, The effect of cooling conditions on the evolution of non-metallic inclusions in high manganese TWIP steels[J], Metall. Mater. Trans. B. 47(2), 1378–1389 (2016) [CrossRef] [Google Scholar]
  44. H. Goto, K. Miyazawa, K. Yamaguchi, S. Ogibayashi, K. Tanaka, Effect of cooling rate on oxide precipitation during solidification of low carbon steels[J], ISIJ Int. 34(5), 414–419 (1994) [CrossRef] [Google Scholar]
  45. Y. Gong, C. Cai, J. Chen, S. Zheng, H. Li, Three-dimensional duplex morphology of MnS-AlN and thermodynamic analysis, Charact. Miner. Met. Mater.: John Wiley & Sons, Inc., 2013, pp. 91–97 [Google Scholar]
  46. S. Mishra, V. Kumar, Co-precipitation of copper-manganese sulphide in Fe-3%Si steel[J], Mater. Sci. Eng.: B. 32(3), 177–184 (1995) [CrossRef] [Google Scholar]
  47. W. Sun, J. Jonas, Influence of dynamic precipitation on grain boundary sliding during high temperature creep[J], Acta Metall. Mater. 42(1), 283–292 (1994) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.