Free Access
Metall. Res. Technol.
Volume 117, Number 2, 2020
Article Number 206
Number of page(s) 7
Published online 17 April 2020
  1. M.H. Manjili, M. Halali, Removal of non-metallic inclusions from nickel base superalloys by electromagnetic levitation melting in a slag, Metall. Mater. Trans. B 49, 61–68 (2018) [CrossRef] [Google Scholar]
  2. J.D. Busch, J.J. Debarbadillo, M.J.M. Krane, Flux entrapment and titanium nitride defects in electroslag remelting of INCOLOY alloys 800 and 825, Metall. Mater. Trans. A 44, 5295–5303 (2013) [CrossRef] [Google Scholar]
  3. X.C. Chen, C.B. Shi, H.J. Guo, F. Wang, H. Ren, D. Feng, Investigation of oxide inclusions and primary carbonitrides in Inconel 718 superalloy refined through electroslag remelting process, Metall. Mater. Trans. B 43, 1596–1607 (2012) [CrossRef] [Google Scholar]
  4. H.E.O. Kellner, A.V. Karasev, O. Sundqvist, A. Memarpour, P.G. Jönsson, Estimation of non-metallic inclusions in industrial Ni based alloys 825, Steel Res. Int. 88(4), 1–8 (2017) [Google Scholar]
  5. D. Texier, J. Cormier, P. Villechaise, J.C. Stinville, C.J. Torbet, S. Pierret, T.M. Pollock, Crack initiation sensitivity of wrought direct aged alloy 718 in the very high cycle fatigue regime, Mater. Sci. Eng. A. 678, 122–136 (2016) [CrossRef] [Google Scholar]
  6. G.L. Miao, X.G. Yang, D.Q. Shi, Competing fatigue failure behaviors of Ni-based superalloy FGH96 at elevated temperature, Mater. Sci. Eng. A. 668, 66–72 (2016) [CrossRef] [Google Scholar]
  7. J. Jiang, J. Yang, T.T. Zhang, F.P.E. Dunne, T.B. Britton, On the mechanistic basis of fatigue crack nucleation in Ni superalloy containing inclusions using high resolution electron backscatter diffraction, Acta Mater. 97, 367–369 (2015) [Google Scholar]
  8. S.J. Sun, Y.Z. Tian, H.R. Lin, X.G. Dong, Y.H. Wang, Z.J. Zhang, Z.F. Zhang, Enhanced strength and ductility of bulk CoCrFeMnNi high entropy alloy having fully recrystallized ultrafine-grained structure, Mater. Des. 133, 122–127 (2017) [Google Scholar]
  9. S.Q. Xia, Y. Zhang, Deformation mechanisms of Al0.1CoCrFeNi high entropy alloy at ambient and cryogenic temperatures, Mater. Sci. Eng. A. 733, 408–413 (2018) [CrossRef] [Google Scholar]
  10. S.Q. Xia, M.C. Gao, T.F. Yang, P.K. Liaw, Y. Zhang, Phase stability and microstructures of high entropy alloys ion irradiated to high doses, J. Nucl. Mater. 480, 100–108 (2016) [Google Scholar]
  11. S.Q. Xia, X. Yang, T.F. Yang, S. Liu, Y. Zhang, Irradiation resistance in AlxCoCrFeNi high entropy alloys, JOM 67, 2340–2344 (2015) [CrossRef] [Google Scholar]
  12. Y.Z. Li, F. Hu, L. Luo, J.Y. Xu, Z.W. Zhao, Y.H. Zhang, D.L. Zhao, Hydrogen storage of casting MgTiNi alloys, Catal. Today 318, 103–106 (2018) [Google Scholar]
  13. C.D. Rabadia, Y.J. Liu, G.H. Cao, Y.H. Li, C.W. Zhang, T.B. Sercombe, H. Sun, L.C. Zhang, High-strength β stabilized Ti-Nb-Fe-Cr alloys with large plasticity, Mater. Sci. Eng. A 732, 368–377 (2018) [CrossRef] [Google Scholar]
  14. M.Y. Wu, X.R. Yang, R.X. Zou, F.J. Qian, S.Y. Hu, W.Y. Wang, G.L. Zhong, X.F. Miao, F. Xu, A time-, energy-, and cost-efficient way of preparing (MnFe)2(P, Si)-type magnetocaloric materials, Mater. Lett. 236, 579–582 (2009) [Google Scholar]
  15. Z.D. Yao, X.Z. Xiao, Z.Q. Liang, H.Q. Kou, W.H. Luo, C.G. Chen, L.J. Jiang, L.X. Chen, Improvement on the kinetic and thermodynamic characteristics of Zr1-xNbxCo (x=0-0.2) alloys for hydrogen isotope storage and delivery, J. Alloys Compd. 784, 1062–1070 (2019) [Google Scholar]
  16. M. Besse, P. Castany, T. Gloriant, Mechanisms of deformation in gum metal TNTZ-O and TNTZ titanium alloys. A comparative study on the oxygen influence, Acta Mater. 59, 5982–5988 (2011) [Google Scholar]
  17. T. Toh, H. Yamamura, H. Kondo, M. Wakoh, S.I. Shimasaki, S. Taniguchi, Kinetics evaluation of inclusions removal during levitation melting of steel in cold crucible, ISIJ Int. 47, 1625–1632 (2007) [CrossRef] [Google Scholar]
  18. T. Toh, H. Yamamura, H. Kondo, M. Wakoh, E. Takeuchi, Inclusions behavior analysis during levitation melting of steel in cold crucible for application to cleanliness assessment, ISIJ Int. 45, 984–990 (2005) [CrossRef] [Google Scholar]
  19. L. Yang, G.G. Cheng, Characteristics of Al2O3, MnS, and TiN inclusions in the remelting process of bearing steel, Int. J. Miner. Metall. Mater. 24, 869–875 (2017) [CrossRef] [Google Scholar]
  20. Y. Liu, L.F. Zhang, H.J. Duan, Y. Zhang, Y. Luo, A.N. Conejo, Extraction, thermodynamic analysis and precipitation mechanism of MnS-TiN, Metall. Mater. Trans. A 47, 3015–3025 (2016) [CrossRef] [Google Scholar]
  21. Y. Luo, W. Yang, Q. Ren, Z.Y. Hu, M. Li, L.F. Zhang, Evolution of non-metallic inclusions and precipitates in oriented silicon steel, Metall. Mater. Trans. B 49, 926–932 (2018) [CrossRef] [Google Scholar]
  22. J. Appelberg, K. Nakajima, H. Shibata, A. Tilliander, P. J̈onsson, In situ studies of misch-metal particle behavior on a molten stainless steel surface, Mater. Sci. Eng. A 495, 330–334 (2008) [CrossRef] [Google Scholar]
  23. H.B. Yin, H. Shibata, T. Emi, M. Suzuki, In-situ observation of collision, agglomeration and cluster formation of alumina inclusion particles on steel melts, ISIJ Int. 37, 936–945 (1997) [CrossRef] [Google Scholar]
  24. H. Shibata, H.B. Yin, S. Yoshinaga, T. Emi, M. Suzuki, In-situ observation of engulfment and pushing of nonmetallic inclusions in steel melt by advancing melt-solid interface, ISIJ Int. 38, 149–156 (1998) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.