Free Access
Metall. Res. Technol.
Volume 117, Number 3, 2020
Article Number 308
Number of page(s) 11
Published online 01 June 2020
  1. Q.K. Pan, L. Gao, L. Wang, A multi-objective hot-rolling scheduling problem in the compact strip production, Appl. Math. Modell. 73(1), 327–348 (2019) [CrossRef] [Google Scholar]
  2. J. Pittner, M.A. Simaan, Advanced control to reduce the likelihood of cobbles in the tandem rolling of hot metal strip, IEEE Trans. Ind. Appl. 51(5), 4305–4312 (2015) [Google Scholar]
  3. D.H. Zhang, W. Peng, J.G. Ding, Automation system and its development for hot strip mill, Steel Roll 32(2), 6–12 (2015) [Google Scholar]
  4. L.J. Sun, C. Shao, L. Zhang, Dynamic tracking prediction control of exit strip thickness based on improved fractal, Metall. Res. Technol. 114(4), 1–14 (2015) [Google Scholar]
  5. L.J. Sun, C. Shao, L. Zhang, A strip thickness prediction method of hot rolling based on D_S information reconstruction, J. Cent. South Univ. 22(1), 2192–2200 (2015) [CrossRef] [Google Scholar]
  6. H.Y. Zhang, J. Sun, D.H. Zhang, Improved Smith prediction monitoring AGC system based on feedback-assisted iterative learning control, J. Cent. South Univ. Technol. 21(9), 3492–3497 (2014) [CrossRef] [Google Scholar]
  7. X.R. Min, J.X. Zhou, A new method of the steel strip thickness control forecasting based on optimized RBF neutral network using IPSO algorithm, J. Inner Mong. Univ. Sci. Technol. 35(1), 75–79 (2016) [Google Scholar]
  8. H.N. Bu, Z.W. Yan, D.H. Zhang, Rolling-schedule multi-objective optimization based on influence function for thin-gauge steel strip in tandem cold rolling, Scientia Iranica 23(6), 2663–2672 (2016) [CrossRef] [Google Scholar]
  9. Y.F. Ji, D.H. Zhang, S.Z. Chen, Algorithm design and application of novel GM-AGC based on mill stretch characteristic curve, J. Cent. South Univ. Technol. 21(2), 942–947 (2014) [CrossRef] [Google Scholar]
  10. L.J. Sun, C. Shao, L. Zhang, Hybrid dynamic continuous strip thickness prediction of hot rolling, Eng. Lett. 25(3), 268–276 (2017) [Google Scholar]
  11. F.C. Yin, J. Sun, D.H. Zhang, Sliding mode variable structure control for smith prediction monitoring AGC system based on double power reaching law, J. Braz. Soc. Mech. Sci. Eng. 38(6), 1731–1743 (2016) [CrossRef] [Google Scholar]
  12. F.C. Yin, D.H. Zhang, X. Li, Iterative learning control with an improved internal model for a monitoring automatic-gauge-control system, Metallurgist 59(9–10), 987–997 (2016) [CrossRef] [Google Scholar]
  13. J. Sun, D.H. Zhang, X. Li, Smith prediction monitor AGC system based on fuzzy self-tuning PID control, J. Iron Steel Res. Int. 17(2), 22–26 (2010) [CrossRef] [Google Scholar]
  14. Y.J. Hu, J. Sun, S.Z. Chen, Optimal control of tension and thickness for tandem cold rolling process based on receding horizon control, Ironmak. Steelmak. 29(1), 1–10 (2019) [Google Scholar]
  15. R. Ammar, G. Said, Dynamic matrix control and generalized predictive control, comparison study with IMC-PID, Int. J. Hydrog. Energy 28(13), 17561–17570 (2017) [Google Scholar]
  16. L.M. Wang, Y. Cheng, J. Zou, Battery available power prediction of hybrid electric vehicle based on improved Dynamic Matrix Control algorithms, J. Power Sources 261(5), 337–347 (2014) [Google Scholar]
  17. D.M. Lima, J.E. Normey-Rico, T.M. Santos, Temperature control in a solar collector field using Filtered Dynamic Matrix Control, ISA Trans. 62(1), 39–49 (2015) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.