Free Access
Issue
Metall. Res. Technol.
Volume 117, Number 3, 2020
Article Number 302
Number of page(s) 10
DOI https://doi.org/10.1051/metal/2020025
Published online 08 May 2020
  1. B. Swain, Recovery and recycling of lithium: A review, Sep. Purif. Technol. 172, 388 (2017) [Google Scholar]
  2. T. Or, S.W. Gourley, K. Kaliyappan, A. Yu, Z. Chen, Recycling of mixed cathode lithium-ion batteries for electric vehicles: Current status and future outlook, Carbon Energy (2020), https://doi.org/10.1002/cey2.29 [Google Scholar]
  3. J. Ordonez, E.J. Gago, A. Girard, Processes and technologies for the recycling and recovery of spent lithium-ion batteries, Renew. Sustain. Energy Rev. 60, 195 (2016) [CrossRef] [Google Scholar]
  4. S. Pindar, N. Dhawan, Carbothermal reduction of spent mobile phones batteries for the recovery of lithium, cobalt, and manganese values, JOM 71, 4483 (2019) [CrossRef] [Google Scholar]
  5. Y. Zhang, W. Wang, Q. Fang, S. Xu, Improved recovery of valuable metals from spent lithium-ion batteries by efficient reduction roasting and facile acid leaching, Waste Manage. 102, 847–855 (2020) [CrossRef] [Google Scholar]
  6. E. Rudnik, J. Knapczyk-Korczak, Preliminary investigations on hydrometallurgical treatment of spent Li-ion batteries, Metall. Res. Technol. 116, 603 (2019), https://doi.org/10.1051/metal/2019008 [CrossRef] [EDP Sciences] [Google Scholar]
  7. H. Liu, G. Zhu, L. Zhang, Q. Qu, M. Shen, H. Zheng, Controllable synthesis of spinel lithium nickel manganese oxide cathode material with enhanced electrochemical performances through a modified oxalate co-precipitation method, J. Power Sources 274, 1180 (2015) [Google Scholar]
  8. Indian Bureau of mines, Part II: Metals & Alloys, Cobalt, Indian Minerals Yearbook, Vol. 57, 2018, https://ibm.gov.in/index.php?c=pages&m=index&id=1373 [Google Scholar]
  9. K.M. Winslow, S.J. Laux, T. Townsend, A review of the growing concern and potential management strategies of waste lithium-ion batteries, Resour. Conserv. Recycl. 129, 263 (2018) [Google Scholar]
  10. P. Meshram, B.D. Pandey, T.R. Mankhand, H. Deveci, Acid baking of spent lithium-ion batteries for selective recovery of major metals: A two-step process, J. Ind. Eng. Chem. 43, 117 (2016) [Google Scholar]
  11. H. Dang, N. Li, Z. Chang, B. Wang, Y. Zhan, X. Wu, W. Li, Lithium leaching via calcium chloride roasting from simulated pyrometallurgical slag of spent lithium ion battery, Sep. Purif. Technol., 233, 116025 (2020) [Google Scholar]
  12. H. Pinegar, Y.R. Smith, Recycling of end-of-life lithium-ion batteries, Part II: Laboratory-scale research developments in mechanical, thermal, and leaching treatments, J. Sustainable Metall. (2020), https://doi.org/10.1007/s40831-020-00265-8 [Google Scholar]
  13. L. Yun, D. Linh, L. Shui, X. Peng, A.L. Garg, M.L.P. Le, J. Sandoval, Metallurgical and mechanical methods for recycling of lithium-ion battery pack for electric vehicles, Resour. Conserv. Recycl. 136, 198 (2018) [Google Scholar]
  14. G.P. Nayaka, K.V. Pai, G. Santhosh, J. Manjanna, Recovery of cobalt as cobalt oxalate from spent lithium-ion batteries by using glycine as leaching agent, J. Environ. Chem. Eng. 4, 2378 (2016) [Google Scholar]
  15. S. Wang, C. Wang, F. Lai, F. Yan, Z. Zhang, Reduction-ammoniacal leaching to recycle lithium, cobalt, and nickel from spent lithium-ion batteries with a hydrothermal method: Effect of reductants and ammonium salts, Waste Manage. 102, 122 (2020) [CrossRef] [Google Scholar]
  16. S.R. Sunil, S. Vishvakarma, A. Barnwal, N. Dhawan, Processing of spent Li-ion batteries for recovery of cobalt and lithium values, JOM 71, 4659 (2019) [CrossRef] [Google Scholar]
  17. P. Liu, L. Xiao, Y. Chen, Y. Tang, J. Wu, H. Chen, Recovering valuable metals from LiNixCoyMn1 − x yO2 cathode materials of spent lithium-ion batteries via a combination of reduction roasting and stepwise leaching, J. Alloys Compd. 783, 743 (2019) [Google Scholar]
  18. Z. Huang, J. Ruan, Z. Yuan, R. Qiu, Characterization of the materials in waste power banks and the green recovery process, ACS Sustain. Chem. Eng. 6, 3815 (2018) [Google Scholar]
  19. J. Xiao, J. Li, Z. Xu, A novel approach for in situ recovery of lithium carbonate from spent lithium-ion batteries using vacuum metallurgy, Environ. Sci. Technol. 51, 11960 (2017) [Google Scholar]
  20. J. Li, G. Wang, Z. Xu, Environmentally-friendly oxygen-free roasting/wet magnetic separation technology for in situ recycling cobalt, lithium carbonate and graphite from spent LiCoO2/graphite lithium batteries, J. Hazard. Mater. 302, 97 (2016) [Google Scholar]
  21. J. Hu, J. Zhang, H. Li, Y. Chen, C. Wang, A promising approach for the recovery of high value-added metals from spent lithium-ion batteries, J. Power Sources 351, 192 (2017) [Google Scholar]
  22. S.R. Sunil, N. Dhawan, Thermal processing of spent Li-ion batteries for extraction of lithium and cobalt-manganese values, Trans. Indian Inst. Met. 72, 3035 (2019) [CrossRef] [Google Scholar]
  23. Y. Yang, G. Huang, S. Xu, Y. He, X. Liu, Thermal treatment process for the recovery of valuable metals from spent lithium-ion batteries, Hydrometallurgy 165, 390 (2016) [CrossRef] [Google Scholar]
  24. B. Musariri, G. Akdogan, C. Dorfling, S. Bradshaw, Evaluating organic acids as alternative leaching reagents for metal recovery from lithium ion batteries, Miner. Eng. 137, 108 (2019) [CrossRef] [Google Scholar]
  25. S.J. Jose, F.G. Goya, P.M. Calatayud, B.H. Claudia, C.R. Paula, G.G. Rodolfo, Magnetic field-assisted gene delivery: Achievements and therapeutic potential, Curr. Gene Theory 12, 116 (2012) [CrossRef] [Google Scholar]
  26. G. Yang, D. Gao, Z. Shi, Z. Zhang, J. Zhang, J. Zhang, D. Xue, Room temperature ferromagnetism in vacuum-annealed CoO nanospheres, J. Phys. Chem. C. 114, 21989 (2010) [CrossRef] [Google Scholar]
  27. T. Ozkaya, A. Baykal, M.S. Toprak, Y. Koseoğlu, Z. Durmuş, Reflux synthesis of Co3O4 nanoparticles and its magnetic characterization, J. Magn. Magn. Mater. 321, 2145 (2009) [Google Scholar]
  28. W.S. Seo, H.H. Jo, K. Lee, B. Kim, S.J. Oh, J.T. Park, Size‐dependent magnetic properties of colloidal Mn3O4 and MnO nanoparticles, Angewandte Chemie Int. Ed. 43, 1115 (2004) [CrossRef] [Google Scholar]
  29. E.T. Turkdogan, J.V. Vinters, Kinetics of oxidation of graphite and charcoal in carbon dioxide, Carbon 7, 101 (1969) [Google Scholar]
  30. E. Antolini, M. Ferretti, Synthesis and thermal stability of LiCoO2, J. Solid State Chem. 117, 1 (1995) [Google Scholar]
  31. L. Xiaowei, R. Jean-Charles, Y. Suyuan, Effect of temperature on graphite oxidation behavior, Nucl. Eng. Des. 227, 273 (2004) [CrossRef] [Google Scholar]
  32. V. Massarotti, D. Capsoni, M. Bini, Stability of LiMn2O4 and new high temperature phases in air, O2 and N2, Solid State Commun. 122, 317 (2002) [Google Scholar]
  33. F.E. Sesan, Practical reduction of manganese oxides, J. Chem. Technol. Appl. 1, 1 (2017) [Google Scholar]
  34. S. Pindar, N. Dhawan, Recycling of mixed discarded lithium-ion batteries via microwave processing route, Sustain. Mater. Technol. 25, e00157 (2020) [Google Scholar]
  35. D.D.L. Chung, Review graphite, J. Mater. Sci. 37, 1475 (2002) [Google Scholar]
  36. A. Mohammad-Khah, R. Ansari, activated charcoal: Preparation, characterization and applications: A review article, Inter. J. Chem. Tech. Res. 1, 859 (2009) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.