Free Access
Metall. Res. Technol.
Volume 117, Number 3, 2020
Article Number 310
Number of page(s) 7
Published online 01 June 2020
  1. O. Kovarik, J. Siegl, J. Cizek, T. Chraska, J. Kondas, Fracture toughness of cold sprayed pure metals, J. Therm. Spray Tech. 29, 147–157 (2020) [CrossRef] [Google Scholar]
  2. ISO 12135, Metallic materials, Unified method of test for the determination of quasistatic fracture toughness, 2002 [Google Scholar]
  3. B.F. Sorensen, A.N. Kumar, Fracture resistance of 8 mol % yttria stabilized zirconia, Bull. Mater. Sci. 24, 111–116 (2001) [CrossRef] [Google Scholar]
  4. W. Tong, An adaptive backward image correlation technique for deformation mapping of a growing crack in thin sheets, Exp. Tech. 28, 63–67 (2004) [Google Scholar]
  5. S.R. Lampman et al., ASM Handbook, Fatigue and fracture, Vol. 19, ASM International, Ohio, 1996 [Google Scholar]
  6. D.M. Kulkarni, R. Prakash, P. Talan, A.N. Kumar, The effect of specimen thickness on the experimental and finite element characterization of CTOD in extra deep drawn steel sheets, Sadhana 29, 365–380 (2004) [CrossRef] [Google Scholar]
  7. A.S. Gullerud, R.H. Dodds Jr., R.W. Hampton, D.S. Dawicke, 3D modeling of ductile crack growth in thin sheet metals: Computational aspects and validation, Eng. Fract. Mech. 63, 347–374 (1999) [Google Scholar]
  8. X. Mao, Influence of specimen size on I–III mixed mode fracture, fracture toughness JIC and plastic dissipation with crack growth dWp/da, Eng. Fract. Mech. 38, 241–254 (1991) [Google Scholar]
  9. R.A. Mirshams, C.H. Xiao, S.H. Whang, W.M. Yin, R-curve characterization of the fracture toughness of nanocrystalline nickel thin sheets, Mat. Sci. Eng. A315, 21–27 (2001) [CrossRef] [Google Scholar]
  10. A.R. Shahani, M. Rastegar, M. Botshekanan Dehkordi, H. Moayeri Kashani, Experimental and numerical investigation of thickness effect on ductile fracture toughness of steel alloy sheets, Eng. Fract. Mech. 77, 646–659 (2010) [Google Scholar]
  11. A. Sultan, R.A. Pasha, M. Ali, M.Z. Khan, M.A. Khan, N.U. Dar, M. Shah, Numerical simulation and experimental verification of CMOD in SENT specimen: Application on FCGR of welded tool steel, Acta Metall. Sinica 26, 92–96 (2013) [CrossRef] [Google Scholar]
  12. Y. Kayamori, S. Hillmansen, P.S.J. Crofton, R.A. Smith, Ductile crack propagation characteristics in steel thin single edge notched tension specimens, Mater. Sci. Forum 539–543, 2180–2185 (2007) [CrossRef] [Google Scholar]
  13. C. Bernstone, A. Heyden, Image analysis for monitoring of crack growth in hydropower concrete structures, Measurement 42, 878–893 (2009) [CrossRef] [Google Scholar]
  14. V. Richter-Trummer, E.A. Marques, F.J.P. Chaves, J.M.R.S. Tavares, L.F.M. da Silva, P.M.S.T. de Castro, Analysis of crack growth behavior in a double cantilever beam adhesive fracture test by different digital image processing techniques, Materialwiss. Werkstofftech. 42(5), 452–459 (2011) [CrossRef] [Google Scholar]
  15. V. Richter-Trummer, E.A. Marques, F.J.P. Chaves, J.M.R.S. Tavares, L.F.M. da Silva, P.M.S.T. de Castro, Analysis of the crack growth behavior in a double cantilever beam adhesive fracture test using digital image processing techniques, in: 7th EUROMECH solid mechanics conference ESMC2009, 2009, pp. 223–224 [Google Scholar]
  16. Z. Ma, J.M.R.S. Tavares, R.M. Natal Jorge, A review on the current segmentation algorithms for medical images, in: 1st International conference on imaging theory and applications IMAGAPP, 2009, pp. 135–140 [Google Scholar]
  17. Z. Ma, J.M.R.S. Tavares, R.N. Jorge, T. Mascarenhas, A review of algorithms for medical image segmentation and their applications to the female pelvic cavity, Comput. Meth. Biomech. Biomed. Eng. 13, 235–246 (2010) [CrossRef] [Google Scholar]
  18. J.M.R.S. Tavares, Image processing and analysis: Applications and trends, in: 5th International conference AES-ATEMA’2010, 2010, pp. 27–41 [Google Scholar]
  19. M. Adamiak, B. Wyględacz, A. Czupryński, J. Górka, A study of susceptibility and evaluation of causes of cracks formation in braze-weld filler metal in lap joints aluminium-carbon steel made with use of CMT method and high power diode, Arch. Metall. Mater. 62(4), 2113–2123 (2017) [CrossRef] [Google Scholar]
  20. BS 5762, Methods for crack opening displacement (COD) testing, 1979 [Google Scholar]
  21. Ľ. Ambriško, L. Pešek, The stretch zone of automotive steel sheets, Sadhana 39(2), 525–530 (2014) [CrossRef] [Google Scholar]
  22. M.P. Marusin, A.V. Fedorov, A.P. Kren’, E.V. Gnutenko, Determination of the crack resistance characteristics of graphitized carbon materials by the dynamic indentation method, Meas. Tech. 57(12), 1411–1415 (2015) [CrossRef] [Google Scholar]
  23. Ľ. Ambriško, M. Cehlár, D. Marasová, The rate of stable crack growth (SCG) in automotive steels sheets, Metalurgija 56(3–4), 396–398 (2017) [Google Scholar]
  24. A. Pribulová, P. Futáš, A. Kmita, D. Marasová, M. Holtzer, Impact of electro slag remelting on 14 109 steel properties, Arch. Metall. Mater. 62(1), 181–185 (2017) [CrossRef] [Google Scholar]
  25. K. Murawski, Measurement of membrane displacement using a motionless camera, Acta Phys. Pol. A 128, 10–14 (2015) [Google Scholar]
  26. K.L. Singh, K. Keswani, M. Vaggar, Crack growth simulation of stiffened fuselage panels using XFEM techniques, Indian J. Eng. Mater. Sci. 21, 418–428 (2014) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.