Free Access
Metall. Res. Technol.
Volume 117, Number 4, 2020
Article Number 402
Number of page(s) 5
Published online 25 June 2020
  1. M. Safari, H. Mostaan, A. Ghaderi, Dissimilar resistance spot welding of AISI 304 to AISI 409 stainless steels: mechanical properties and microstructural evolutions, Metall. Res. Technol. 115, 10 (2018) [CrossRef] [EDP Sciences] [Google Scholar]
  2. K. Ding, B.G. Zhao, X. Huo, M.J. Fan, X.H. Li, Y.H. Zhang, T. Wei, G.Z. Wu, Y.L. Gao, Role of the V-notch location in the impact toughness of 9 pct Cr-CrMoV dissimilar welded joints, Metall. Mater. Trans. A 51, 1699 (2020) [CrossRef] [Google Scholar]
  3. Q. Sun, H.S. Di, X.N. Wang, X.M. Chen, X.K. Nie, D.L. Chen, J.P. Li, Effect of heat input on microstructure and properties of dissimilar laser welded joints between TWIP and TRIP steels, Metall. Res. Technol. 116, 9 (2019) [Google Scholar]
  4. B. Sadeghi, H. Sharifi, M. Rafiei, A.R. Abbasian, E. Saebnoori, Microstructural, mechanical and corrosion properties of dissimilar joint between AISI A321 stainless steel and ASTM A537CL1 structural steel produced by GTAW process, Metall. Res. Technol. 116, 11 (2019) [CrossRef] [EDP Sciences] [Google Scholar]
  5. W.S. Lee, H.C. Kao, High temperature deformation behaviour of Haynes 188 alloy subjected to high strain rate loading, Mater. Sci. Eng. A 594, 292 (2014) [CrossRef] [Google Scholar]
  6. M. Moradi, D. Ghorbani, M.K. Moghadam, M. Kazazi, F. Rouzbahani, S. Karazi, Nd: YAG laser hardening of AISI 410 stainless steel: Microstructural evaluation, mechanical properties, and corrosion behavior, J. Alloys Compd. 795, 213 (2019) [Google Scholar]
  7. G.Z. Wu, Y.H. Zhang, K. Ding, B.G. Zhao, Y.F. Wang, T. Wei, Y.L. Gao, Microstructure evolution of the 410 stainless steel and Co-based alloy dissimilar welded joint manufactured by electron beam welding, in: The Minerals, Metals & Materials Society (eds.). TMS 2020 149th Annual Meeting & Exhibition Supplemental Proceedings, The Minerals, Metals & Materials Series. Springer, Cham, 2020, pp. 793–801. [Google Scholar]
  8. M.R. Thakare, J.F. Mason, A.K. Owen, D.R.H. Gillespie, A.J. Wilkinson, G. Franceschini, Effect of sliding speed and counterface properties on the tribo-oxidation of brush seal material under dry sliding conditions, Tribol. Int. 96, 373 (2016) [Google Scholar]
  9. D. Hu, Q. Zhang, Design of brush seal for steam turbine, Lubr. Eng. 33, 78 (2008) [Google Scholar]
  10. K. Ding, H.J. Ji, X. Liu, P. Wang, Q.L. Zhang, X.H. Li, Y.L. Gao, Prevention of carbon migration in 9% Cr/CrMoV dissimilar welded joint by adding tungsten inert gas overlaying layer, J. Iron Steel Res. Int. 25, 847 (2018) [CrossRef] [Google Scholar]
  11. S. Kumar, A.S. Shahi, Studies on metallurgical and impact toughness behavior of variably sensitized weld metal and heat affected zone of AISI 304L welds, Mater. Des. 89, 399 (2016) [Google Scholar]
  12. F.G. Lu, P. Liu, H.J. Ji, Y.M. Ding, X.J. Xu, Y.L. Gao, Dramatically enhanced impact toughness in welded 10%Cr rotor steel by high temperature post-weld heat treatment, Mater. Charact. 92, 149 (2014) [Google Scholar]
  13. O. Martin, P. De Tiedra, M. San-Juan, Effect of Widmanstatten eta phase on tensile shear strength of resistance spot welding joints of A286 superalloy, Metall. Res. Technol. 116, 9 (2019) [CrossRef] [EDP Sciences] [Google Scholar]
  14. Q.J. Wu, F.G. Lu, H.C. Cui, X. Liu, P. Wang, Y.L. Gao, Soft zone formation by carbon migration and its effect on the high-cycle fatigue in 9% Cr-CrMoV dissimilar welded joint, Mater. Lett. 141, 242 (2015) [Google Scholar]
  15. Y.L. Gao, B.G. Zhao, J.J. Vlassak, C. Schick, Nanocalorimetry: Door opened for in situ material characterization under extreme non-equilibrium conditions, Prog. Mater. Sci. 104, 53 (2019) [Google Scholar]
  16. M. Safari, H. Mostaan, Experimental investigation of the effects of process parameters on the strength of eutectoid steel (AISI 1075) sheet resistance spot welds, Metall. Res. Technol. 113, 13 (2016) [CrossRef] [EDP Sciences] [Google Scholar]
  17. Y.Q. Wang, H.C. Cui, M.J. Fan, Y.X. Chen, F.G. Lu, Characterization on the gradient microstructure near the fusion interface of dissimilar metal between high Cr heat-resistant steel and Ni-based Alloy 617, Mater. Charact. 151, 227 (2019) [Google Scholar]
  18. B. Xiao, Y.C. Lei, X.D. Wu, Carbide precipitation kinetics of a 2000 MPa grade highstrength spring steel, Metall. Res. Technol. 113, 7 (2016) [CrossRef] [EDP Sciences] [Google Scholar]
  19. K. Ding, P. Wang, X. Liu, X.H. Li, B.G. Zhao, Y.L. Gao, Formation of lamellar carbides in Alloy 617-HAZ and their role in the impact toughness of Alloy 617/9%Cr dissimilar welded joint, J. Mater. Eng. Perform. 27, 6027 (2018) [Google Scholar]
  20. W. Liu, X. Liu, F.G. Lu, X.H. Tang, H.C. Cui, Y.L. Gao, Creep behavior and microstructure evaluation of welded joint in dissimilar modified 9Cr-1Mo steels, Mater. Sci. Eng. A 644, 337 (2015) [CrossRef] [Google Scholar]
  21. K. Ding, S.F. Qiao, S.P. Liu, B.G. Zhao, X. Huo, X.H. Li, Y.L. Gao, Failure transition mechanism of stress rupture performance of the Inconel 625/9 pct Cr steel dissimilar welded joint, Metall. Mater. Trans. A 50, 4652 (2019) [CrossRef] [Google Scholar]
  22. B. Avishan, Effect of prolonged isothermal heat treatment on the mechanical behavior of advanced NANOBAIN steel, Int. J. Miner. Metall. Mater. 24, 1010 (2017) [CrossRef] [Google Scholar]
  23. A. Bajwoluk, P. Gutowski, Stress and crack propagation in the surface layer of carburized stable austenitic alloys during cooling, Mater. High Temp. 36, 9 (2019) [CrossRef] [Google Scholar]
  24. S.S. Hwang, Y.S. Lim, S.W. Kim, D.J. Kim, H.P. Kim, Role of grain boundary carbides in cracking behavior of Ni base alloys, Nucl. Eng. Technol. 45, 73 (2013) [CrossRef] [Google Scholar]
  25. X. Guo, J.M. Gong, Y. Jiang, X.W. Wang, Y.P. Zhao, Microstructures and high-temperature mechanical properties in 9Cr-0.5Mo-1.8W-VNb steel after aging at 650 °C, Mater. High Temp. 32, 566 (2015) [CrossRef] [Google Scholar]
  26. B. Langelier, S.Y. Persaud, A. Korinek, T. Casagrande, R.C. Newman, G.A. Botton, Effects of boundary migration and pinning particles on intergranular oxidation revealed by 2D and 3D analytical electron microscopy, Acta Mater. 131, 280 (2017) [Google Scholar]
  27. H. Mostaan, M. Safari, A. Bakhtiari, Micro friction stir lap welding of AISI 430 ferritic stainless steel: A study on the mechanical properties, microstructure, texture and magnetic properties, Metall. Res. Technol. 115, 10 (2018) [CrossRef] [EDP Sciences] [Google Scholar]
  28. Y.H. Zhang, M.J. Fan, K. Ding, B.G. Zhao, Y.B. Zhang, Y. He, Y.F. Wang, G.Z. Wu, T. Wei, Y.L. Gao, Formation and control of the residual δ-ferrite in 9% Cr-HAZ of Alloy 617/9% Cr dissimilar welded joint, Sci. Technol. Weld. Joining (2020) [Google Scholar]
  29. I. Koley, S. Kundu, S.V. Kailas, Friction stir welding of ultra low carbon steel: Microstructure, mechanical properties and electrochemical study, Metall. Res. Technol. 116, 8 (2019) [CrossRef] [EDP Sciences] [Google Scholar]
  30. M. Liu, X.W. Zhang, K.X. Yang, B. Wang, J.J. Yan, Comparison and sensitivity analysis of the efficiency enhancements of coal-fired power plants integrated with supercritical CO2 Brayton cycle and steam Rankine cycle, Energy Convers. Manage. 198, 111918 (2019) [CrossRef] [Google Scholar]
  31. K. Kadoi, A. Murakami, K. Shinozaki, M. Yamamoto, H. Matsumura, Crack repair welding by CMT brazing using low melting point filler wire for long-term used steam turbine cases of Cr-Mo-V cast steels, Mater. Sci. Eng. A 666, 11 (2016) [CrossRef] [Google Scholar]
  32. Z.W. Chen, M.A.L. Phan, K. Darvish, Grain growth during selective laser melting of a Co-Cr-Mo alloy, J. Mater. Sci. 52, 7415 (2017) [Google Scholar]
  33. X.W. Shi, K. Yu, L. Jiang, C.W. Li, Z.J. Li, X.T. Zhou, Microstructural characterization of Ni-201 weld cladding onto 304 stainless steel, Surf. Coat. Technol. 334, 19 (2018) [Google Scholar]
  34. J.L. Xie, Y.C. Ma, W.W. Xing, M.Q. Ou, L. Zhang, K. Liu, Microstructure and mechanical properties of a new cast nickel-based superalloy K4750 joint produced by gas tungsten arc welding process, J. Mater. Sci. 54, 3558 (2019) [Google Scholar]
  35. A. Gholipour, M. Shamanian, F. Ashrafizadeh, Microstructure and wear behavior of Stellite 6 cladding on 17-4 PH stainless steel, J. Alloys Compd. 509, 4905 (2011) [Google Scholar]
  36. F. Brownlie, C. Anene, T. Hodgkiess, A. Pearson, A.M. Galloway, Comparison of hot wire TIG Stellite 6 weld cladding and lost wax cast Stellite 6 under corrosive wear conditions, Wear 404, 71 (2018) [Google Scholar]
  37. S. Apay, B. Gulenc, Wear properties of AISI 1015 steel coated with Stellite 6 by microlaser welding, Mater. Des. 55, 1 (2014) [Google Scholar]
  38. X.P. Tan, P. Wang, Y. Kok, W.Q. Toh, Z. Sun, S.M.L. Nai, M. Descoins, D. Mangelinck, E. Liu, S.B. Tor, Carbide precipitation characteristics in additive manufacturing of Co-Cr-Mo alloy via selective electron beam melting, Scripta Mater. 143, 117 (2018) [CrossRef] [Google Scholar]
  39. M. Kolb, L.P. Freund, F. Fischer, I. Povstugar, S.K. Makineni, B. Gault, D. Raabe, J. Müller, E. Spiecker, S. Neumeier, M. Göken, On the grain boundary strengthening effect of boron in γ/γ′ Cobalt-base superalloys, Acta Mater. 145, 247 (2018) [Google Scholar]
  40. X. Jin, X.X. Xia, Y.F. Li, Y.F. Zhao, F. Xue, G.D. Zhang, Quantitative study of microstructure evolution and the effect on mechanical properties of Super 304H during aging, Mater. High Temp. 36, 459 (2019) [CrossRef] [Google Scholar]
  41. R.F. Dong, J.S. Li, T.B. Zhang, R. Hu, H.C. Kou, Elements segregation and phase precipitation behavior at grain boundary in a Ni-Cr-W based superalloy, Mater. Charact. 122, 189 (2016) [Google Scholar]
  42. A. Zieliński, G. Golański, M. Sroka, P. Skupień, Microstructure and mechanical properties of the T23 steel after long-term ageing at elevated temperature, Mater. High Temp. 33, 154 (2016) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.