Free Access
Metall. Res. Technol.
Volume 117, Number 4, 2020
Article Number 407
Number of page(s) 12
Published online 24 July 2020
  1. J. Michalska, S. Maria, Qualitative and quantitative analysis of σ and χ phases in 2205 duplex stainless steel, Mater. Charact. 56, 355–362 (2006) [Google Scholar]
  2. R. Badji, M. Bouabdallah, B. Bacroix, C. Kahloun, K. Bettahar, N. Kherrouba, Effect of solution treatment temperature on the precipitation kinetic of σ-phase in 2205 duplex stainless steel welds, Mat. Sci. Eng. A-Struct. 496, 447–454 (2008) [Google Scholar]
  3. C. Yeni, M. Koçak, Fracture analysis of laser beam welded superalloys Inconel 718 and 625 using the FITNET procedure, Int. J. Pres. Ves. Pip. 85, 532–539 (2008) [Google Scholar]
  4. G.P. Dinda, A.K. Dasgupta, J. Mazumder, Laser aided direct metal deposition of Inconel 625 superalloy: Microstructural evolution and thermal stability, Mat. Sci. Eng. A-Struct. 509, 98–104 (2009) [Google Scholar]
  5. M. Theofanous, L. Gardner, Experimental and numerical studies of lean duplex stainless steel beams, J. Constr. Steel. Res. 66, 816–825 (2010) [Google Scholar]
  6. T.H. Chen, K.L. Weng, J.R. Yang, The effect of high-temperature exposure on the microstructural stability and toughness property in a 2205 duplex stainless steel, Mat. Sci. Eng. A-Struct. 338, 259–270 (2002) [Google Scholar]
  7. J.N. Dupont, Solidification of an Alloy 625 Weld Overlay, Mater. Trans. A 27A, 3612–3620 (1996) [Google Scholar]
  8. M. Liu, W. Zheng, J.Z. Xiang, Z. Song, E. Pu, H. Feng, Grain Growth Behavior of Inconel 625 superalloy, J. Iron. Steel. Res. Int. 23, 1111–1118 (2016) [Google Scholar]
  9. X. Fujia, L. Yaohui, L. Yuxin, S. Fengyuan, H. Peng, X. Binshi, Microstructural evolution and mechanical properties of Inconel 625 alloy during pulsed plasma arc deposition process, J. Mater. Sci. Technol. 29(5), 480–488 (2013) [Google Scholar]
  10. X. Xing, X. Di, B. Wang, The effect of post-weld heat treatment temperature on the microstructure of Inconel 625 deposited metal, J. Alloys Compd. 593, 110–116 (2014) [Google Scholar]
  11. S.L. Jeng, Y.H. Chang, Microstructure and flow behavior of Ni-Cr-Fe welds with Nb and Mo additions, Mat. Sci. Eng. A-Struct. 560, 343–350 (2013) [Google Scholar]
  12. S.L. Jeng, H.T. Lee, T.Y. Kuo, K.C. Tsai, C.L. Chung, J.Y. Huang, The effects of Mn and Nb on the microstructure and mechanical properties of Alloy 152 welds, Mater. Design 87, 920–931 (2015) [Google Scholar]
  13. K.D. Ramkumar, P. Siva, G. Kumar, V.R. Krishna, A. Chandrasekhar, S. Dev, W.S. Abraham, S. Prabhakaran, S. Kalainathan, R. Sridhar, Influence of laser peening on the tensile strength and impact toughness of dissimilar welds of Inconel 625 and UNS 32205, Mat. Sci. Eng. A-Struct. 676, 88–99 (2016) [Google Scholar]
  14. K.D. Ramkumar, S. Oza, S. Periwal, N. Arivazhagan, R. Sridhar, S. Narayanan, Characterization of weld strength and toughness in the multi-pass welding of Inconel 625 and super-duplex steel UNS S32750, Ciência & Tecnologia dos Materiais 27, 41–52 (2015) [Google Scholar]
  15. H.S. Hosseini, M. Shamanian, A. Kermanpur, Microstructural and weldability analysis of Inconel 617/AISI 310 stainless steel dissimilar welds, Int. J. Pres. Ves. Pip. 144, 18–24 (2016) [Google Scholar]
  16. K.G. Kumar, K.D. Ramkumar, N. Arivazhagan, Characterization of metallurgical and mechanical properties on the multi-pass welding of Inconel 625 and AISI 316L, J. Mech. Sci. Technol. 29, 1039–1047 (2015) [Google Scholar]
  17. F. Hejripour, D.K. Aidun, Consumable selection for arc welding between Stainless Steel 410 and Inconel 718, J. Mater. Process. Technol. 245, 287–299 (2017) [Google Scholar]
  18. T. Ramkumar, M. Selvakumar, P. Narayanasamy, A. Ayisha Begam, P. Mathavan, A. Arun Raj, Studies on the structural property, mechanical relationships and corrosion behaviour of Inconel 718 and SS 316L dissimilar joints by TIG welding without using activated flux, J. Manuf. Process. 30, 290–298 (2017) [Google Scholar]
  19. K.D. Ramkumar, R. Sridhar, S. Periwal, S. Oza, V. Saxena, P. Hidad, N. Arivazhagan, Investigations on the structure – Property relationships of electron beam welded Inconel 625 and UNS 32205, Mater. Design 68, 158–166 (2015) [Google Scholar]
  20. R. Sridhar, K.D. Ramkumar, N. Arivazhagan, Characterization of microstructure, strength, and toughness of dissimilar weldments of Inconel 625 and duplex stainless steel SAF 2205, Acta. Metall. Sin-Engl. 27, 1018–1030 (2014) [Google Scholar]
  21. J. Kangazian, M. Shamanian, Mechanical and microstructural evaluation of SAF 2507 and Incoloy 825 dissimilar welds, J. Manuf. Process. 26, 407–418 (2017) [Google Scholar]
  22. A. Moteshakker, I. Danaee, Microstructure and corrosion resistance of dissimilar weld-joints between duplex stainless steel 2205 and austenitic stainless steel 316L, J. Mater. Sci. Technol. 32, 282–290 (2016) [Google Scholar]
  23. J.N. DuPont, M.R. Notis, A.R. Marder, C.V. Robino, J.R. Michael, Solidification of Nb-Bearing superalloys: Part I. Reaction sequences, Metall. Mater. Trans. A. 29A, 2786–2796 (1998) [Google Scholar]
  24. G.A. Knorovsky, M.J. Cieslak, T.J. Headley, A.D. Romig, W.F. Hammetter, INCONEL 718: A solidification diagram, Metall. Mater. Trans. A. 20, 2149–2158 (1989) [Google Scholar]
  25. B. Radhakrishnan, R.G. Thompson, Solidification of the nickel-base superalloy 718: A phase diagram approach, Metall. Mater. Trans. A. 20A, 2866–2868 (1989) [Google Scholar]
  26. M.J. Cieslak, T.J. Headley, A.D. Romig, T. Kollie, A melting and solidification study of alloy 625, Metall. Mater. Trans. A. 19, 2319–2331 (1988) [Google Scholar]
  27. C.C. Silva, H.C. de Miranda, M.F. Motta, J.P. Farias, C.R.M. Afonso, A.J. Ramirez, New insight on the solidification path of an alloy 625 weld overlay, J. Mater. Res. Technol. 2(3), 228–237 (2013) [Google Scholar]
  28. G. Li, J. Huang, Y. Wu, An investigation on microstructure and properties of dissimilar welded Inconel 625 and SUS 304 using high-power CO2 laser, Int. J. Adv. Manuf. Tech. 76, 1203–1214 (2015) [Google Scholar]
  29. J.F. Wang, Q.J. Sun, H. Wang, J.P. Liu, J.C. Feng, Effect of location on microstructure and mechanical properties of additive layer manufactured Inconel 625 using gas tungsten arc welding, Mat. Sci. Eng. A Struct. 676, 395–405 (2016) [Google Scholar]
  30. J. Loubet, J. Georges, G. Meille, Vickers indentation curves of elastoplastic materials, in: P.J. Blau, B.R. Lawn, Microindentation techniques in materials science and engineering, American Society for Testing and Materials, Philadelphia, 1986, pp. 72–89. [Google Scholar]
  31. G. Guillonneau, G. Kermouche, S. Bec, J.L. Loubet, Determination of mechanical properties by nanoindentation independently of indentation depth measurement, J. Mater. Res. 27(19), 2551–2560 (2012) [Google Scholar]
  32. A. Mortezaie, M. Shamanian, An assessment of microstructure, mechanical properties and corrosion resistance of dissimilar welds between Inconel 718 and 310S austenitic stainless steel, Int. J. Pres. Ves. Pip. 116, 37–46 (2014) [Google Scholar]
  33. A. Eghlimi, M. Shamanian, K. Raeissi, Effect of current type on microstructure and corrosion resistance of super duplex stainless steel claddings produced by the gas tungsten arc welding process, Surf. Coat. Technol. 244, 45–51 (2014). [Google Scholar]
  34. A.J. Ramirez, J.C. Lippold, S.D. Brandi, The relationship between chromium nitride and secondary austenite precipitation in duplex stainless steels, Metall. Mater. Trans. A. 34, 1575–1597 (2003) [Google Scholar]
  35. A.J. Ramirez, S.D. Brandi, J.C. Lippold, Secondary austenite and chromium nitride precipitation in simulated heat affected zones of duplex stainless steels, Sci. Technol. Weld. Joi. 9, 301–313 (2004) [Google Scholar]
  36. K.D. Ramkumar, A. Singh, S. Raghuvanshi, A. Bajpai, T. Solanki, M. Arivarasu, N. Arivazhagan, S. Narayanan, Metallurgical and mechanical characterization of dissimilar welds of austenitic stainless steel and super-duplex stainless steel – A comparative study, J. Manuf. Process. 19, 212–232 (2015) [Google Scholar]
  37. C. Radhakrishna, K.P. Rao, The formation and control of Laves phase in superalloy 718 welds, J. Mater. Sci. 8, 1977–1984 (1997) [Google Scholar]
  38. P. Nie, O.A. Ojo, Z. Li, Numerical modeling of microstructure evolution during laser additive manufacturing of a nickel-based superalloy, Acta Mater. 77, 85–95 (2014) [Google Scholar]
  39. H. Xiao, S. Li, X. Han, J. Mazumder, L. Song, Laves phase control of Inconel 718 alloy using quasi-continuous wave laser additive manufacturing, Mater. Des. 122, 330–339 (2017) [Google Scholar]
  40. G.D.J. Ram, A.V. Reddy, K.P. Rao, G.M. Reddy, Control of Laves phase in Inconel 718 GTA welds with current pulsing, Sci. Technol. Weld. Joi. 9, 390–398 (2004) [Google Scholar]
  41. K.D. Ramkumar, R.J. Sai, V.S. Reddy, S. Gundla, T.H. Mohan, V. Saxena, N. Arivazhagan, Effect of filler wires and direct ageing on the microstructure and mechanical properties in the multi-pass welding of Inconel 718, J. Manuf. Process. 18, 23–45 (2015) [Google Scholar]
  42. K.D. Ramkumar, S.D. Patel, S.S. Praveen, D.J. Choudhury, P. Prabaharan, N. Arivazhagan, M.A. Xavior, Influence of filler metals and welding techniques on the structure-property relationships of Inconel 718 and AISI 316 L dissimilar weldments, Mater. Des. 62, 175–188 (2014) [Google Scholar]
  43. Y. Long, P. Nie, Z. Li, J. Huang, X. Li, X. Xu, Segregation of niobium in laser cladding Inconel 718 superalloy, T. Nonferr. Metal. Soc. 26, 431–436 (2016) [Google Scholar]
  44. J.C. Lippold, S.D. Kiser, J.N. Dupont, Welding metallurgy and weldability of nickel-base alloys, John Wiley & Sons, Inc., Hoboken, New Jersey, 2011 [Google Scholar]
  45. M. Rahmani, A. Eghlimi, M. Shamanian, Evaluation of microstructure and mechanical properties in dissimilar austenitic/superduplex stainless steel joint, J. Mater. Eng. Perform. 23, 3745–3753 (2014) [Google Scholar]
  46. H. Wang, G. He, Effects of Nb/Cr on the cryogenic impact toughness of the deposited metal of ENiCrFe-9, Mat. Sci. Eng. A Struct. 672, 15–22 (2016) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.