Metall. Res. Technol.
Volume 118, Number 6, 2021
Article Number 607
Number of page(s) 11
Published online 14 October 2021
  1. Z. Yuan, X. Wang, C. Xu, W. Li, M. Kwauk, A new process for comprehensive utilization of complex titania ore, Miner. Eng 19, 975 (2006) [Google Scholar]
  2. S. Liu, Y. Guo, G. Qiu, T. Jiang, F. Chen, Extractive metallurgy of vanadium-containing titaniferous magnetite ores: A review, Trans. Nonferrous Met. Soc. China 24, 3372 (2014) [Google Scholar]
  3. C. Xu, Y. Zhang, T. Liu, J. Huang, Solid-state reduction kinetics and mechanism of pre-oxidized vanadium-titanium magnetite concentrate, Minerals 7, 137 (2017) [Google Scholar]
  4. Z. Bian, Y. Feng, H.R. Li, Trans. Extraction of valuable metals from Ti-bearing blast furnace slag using ammonium sulfate pressurized pyrolysis-acid leaching processes, Nonferrous Met. Soc. China 30, 2836 (2020) [Google Scholar]
  5. J. Zhang, X. Wang, L. Ma et al., Preparation of layered K/Mg-Fe-Al catalysts and its catalytic performances in CO hydrogenation, J. Fuel Chem. Technol. 45, 1489 (2017) [Google Scholar]
  6. C. Chen, T. Sun, X. Wang, T. Hu, Effects of MgO on the reduction of vanadium titanomagnetite concentrates with char, JOM 69, 1759 (2017) [Google Scholar]
  7. S. Wang, Y. Guo, F. Zheng et al., Optimization of basicity of high Ti slag for efficient smelting of vanadium titanomagnetite metallized pellets, Metall Mater Trans B 51, 945 (2020) [Google Scholar]
  8. F. Cui, W. Mu, S. Wang et al., Sodium sulfate activation mechanism on co-sulfating roasting to nickel-copper sulfide concentrate in metal extractions, microtopography and kinetics, Miner. Eng 123, 104 (2018) [Google Scholar]
  9. Y. Zhou, H. Yang, X. Xue, S. Yuan, Separation and recovery of iron and rare earth from Bayan Obo tailings by magnetizing roasting and (NH4)2SO4 activation roasting, Metals 7, 195 (2017) [Google Scholar]
  10. W. Liu, S. Yin, D. Luo et al., Optimising the recovery of high-value-added ammonium alum during mineral carbonation of blast furnace slag, J. Alloys Compd. 774, 1151 (2019) [Google Scholar]
  11. P. Dixon, Formation of sulphamic acid during the thermal decomposition of ammonium sulphate, Nature 154, 706 (1944) [Google Scholar]
  12. D. Kosova, A. Druzhinina, L. Tiflova, A. Monayenkova, E. Belyaeva, I. Uspenskaya, Thermodynamic properties of ammonium sulfamate, J. Chem. Thermodyn. 132, 432 (2019) [Google Scholar]
  13. S. Wahyuningsih, E. Pramono, F. Firdiyono et al., Decomposition of ilmenite in hydrochloric acid to obtain high grade titanium dioxide, Asian J. Chem. 25, 6791 (2013) [Google Scholar]
  14. X. Wei, X. Lu, X. Zou, X. Wei, W.Z. Ding, Recovery of valuable metals from a low-grade nickel ore using an ammonium sulfate roasting-leaching process, Trans. Nonferrous Met. Soc. China 23, 2439 (2013) [Google Scholar]
  15. X. Fu, Y. Wang, F. Wei, Phase transitions and reaction mechanism of ilmenite oxidation, Metall. Mater. Trans. A 41, 1338 (2010) [Google Scholar]
  16. H. Li, H. Fang, K. Wang et al., Asynchronous extraction of vanadium and chromium from vanadium slag by stepwise sodium roasting water leaching, Hydrometallurgy 156, 124 (2015a) [Google Scholar]
  17. W. Guo, S. Malus, D. Ryan, Z. Altounian, Crystal structure and cation distributions in the FeTi2O5−FeTi2O5 solid solution series, J. Phys. Condens. Mat. 11, 6337 (1999) [Google Scholar]
  18. Q. Zhu, J. Zhang, H. Li, Influence of phase and microstructure on the rate of hydrochloric acid leaching in pretreated Panzhihua ilmenite, Particuology 14, 83 (2013) [Google Scholar]
  19. J. Huang, J. Cao, N. Tu et al., Effect of surfactants on the removal of nitrobenzene by Fe-bearing montmorillonite/Fe(II), J. Colloid Interface Sci. 533, 409 (2019) [PubMed] [Google Scholar]
  20. T. Yamashita, P. Hayes, Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials, Appl. Surf. Sci. 254, 2441 (2008) [Google Scholar]
  21. D. Cañas-Martínez, S. Cipagauta-Díaz, M. Manrique, R. Gómez, J. Pedraza-Avella, Photocatalytic hydrogen production using FeTiO3 concentrates modified by high energy ball milling and the presence of Mg precursors, Top. Catal. 1, (2020) [Google Scholar]
  22. Y. Zhang, L. Yi, L. Wang et al., A novel process for the recovery of iron, titanium, and vanadium from vanadium-bearing titanomagnetite: sodium modification-direct reduction coupled process, Int. J. Miner. Metall. Mater. 24, 504 (2017) [Google Scholar]
  23. W. Song, H. Li, F. Zhu, K. Li, Q. Zheng, Extraction of vanadium from molten vanadium bearing slag by oxidation with pure oxygen in the presence of CaO Trans, Nonferrous Met. Soc. China 24, 2687 (2014) [Google Scholar]
  24. A. Volkov, U. Kologrieva, A. Kovalev, D. Wainstein, V. Vakhrushev, Vanadium chemical compounds forms in wastes of vanadium pentoxide production, Mater 13, 4889 (2020) [Google Scholar]
  25. R. Zhang, Y. Yu, H. Wang, J. Du, Mesoporous TiO2/g-C3N4 composites with O-Ti-N bridge for improved visible-light photodegradation of enrofloxacin, Sci. Total Environ. 724, 138 (2020) [Google Scholar]
  26. R. Jeanloz, Infrared spectra of olivine polymorphs: α, β phase and spinel, Phys. Chem. Miner. 5, 327 (1980) [Google Scholar]
  27. D. Chen, Z. Liu, B. Fan et al., Synthesis and characterization of TiN-coated cubic boron nitride powders, Int. J. Appl. Ceram. Technol. 11, 946 (2014) [Google Scholar]
  28. G. Jiang, B. Peng, Y. Liang et al., Recovery of valuable metals from zinc leaching residue by sulfate roasting and water leaching, Trans. Nonferrous Met. Soc. China 27, 1180 (2017) [Google Scholar]
  29. I. Hassan, S. Antao, J. Parise, Cancrinite: crystal structure, phase transitions, and dehydration behavior with temperature, Am. Mineral 91, 1117 (2006) [Google Scholar]
  30. C. Cai, Y. Luan, X. Shi, Y. Zhang, (NH4)2SO4 heterogeneous nucleation and glycerol evaporation of (NH4)2SO4-glycerol system in its dynamic efflorescence process, Chem. Phys. 140 (2017) [Google Scholar]
  31. Y. Li, H. Liu, B. Peng et al., Study on separating of zinc and iron from zinc leaching residues by roasting with ammonium sulphate, Hydrometallurgy 158, 42 (2015b) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.