Metall. Res. Technol.
Volume 119, Number 1, 2022
Article Number 102
Number of page(s) 9
Published online 20 December 2021
  1. C.K. Kim, J.I. Park, S. Lee et al., Effects of alloying elements on microstructure, hardness, and fracture toughness of centrifugally cast high-speed steel rolls, Metall. Mater. Trans. A 36, 87–97 (2005) [CrossRef] [Google Scholar]
  2. T.V. Pirtovšek, G. Kugler, M. Godec et al., The behaviour of the carbides of ledeburitic AISI D2 tool steel during multiple hot deformation cycles, Mater. Character. 83, 97–108 (2013) [CrossRef] [Google Scholar]
  3. J. Guo, L.Q. Ai, T.T. Wang et al., Microstructure evolution and micro-mechanical behavior of secondary carbides at grain boundary in a Fe–Cr–W–Mo–V–C alloy, Mater. Sci. Eng. A 715, 359–369 (2018) [CrossRef] [Google Scholar]
  4. V. Vitry, S. Nardone, J.P. Breyer et al., Microstructure of two centrifugal cast high speed steels for hot strip mills applications, Mater. Des. 34, 372–378 (2012) [CrossRef] [Google Scholar]
  5. R.A. Mesquita, C.A. Barbosa, High-speed steels produced by conventional casting, spray forming and powder metallurgy, Mater. Sci. Forum 498, 244–250 (2005) [CrossRef] [Google Scholar]
  6. D. Bombač, M. Terčelj, M. Fazarinc et al., On the increase of intrinsic workability and hot working temperature range of M42 ledeburitic super high steel in as-cast and wrought states, Mater. Sci. Eng. A 703, 438–450 (2017) [CrossRef] [Google Scholar]
  7. W.J. Shen, L.P. Yu, Z. Li et al., In situ synthesis and strengthening of powder metallurgy high speed steel in addition of LaB6, Metall. Mater. Int. 23, 1150–1157 (2017) [CrossRef] [Google Scholar]
  8. C. Garcia, A. Romero, G. Herranz et al., Effect of vanadium carbide on dry sliding wear behavior of powder metallurgy AISI M2 high speed steel processed by concentrated solar energy, Mater. Character. 121, 175–186 (2016) [CrossRef] [Google Scholar]
  9. H.L. Peng, L. Hu, X.L. Zhang et al., Microstructural evolution, behavior of precipitates, and mechanical properties of powder metallurgical high-speed steel S390 during tempering, Metall. Mater. Trans. A 50, 874–883 (2019) [CrossRef] [Google Scholar]
  10. D. Zhang, Z. Li, L. Xie et al., Powder metallurgy of high speed steel produced by solid state sintering and heat treatment, Int. J. Mater. Res. 106, 870–876 (2015) [CrossRef] [Google Scholar]
  11. V. Trabadelo, S. Giménez, I. Iturriza, Microstructural characterization of vacuum sintered T42 powder metallurgy high-speed steel after heat treatments, Mater. Sci. Eng. A 499, 360–367 (2009) [CrossRef] [Google Scholar]
  12. E.J. Lavernia, T.S. Srivatsan, The rapid solidification processing of materials: science, principles, technology, advances, and applications, J. Mater. Sci. 45, 287–325 (2010) [CrossRef] [Google Scholar]
  13. M.M. Serna, J.L. Rossi, MC complex carbide in AISI M2 high-speed steel, Mater. Lett. 63, 691–693 (2009) [CrossRef] [Google Scholar]
  14. E.R. Jesus, E.S. Jesus, J.L. Rossi, Performance assessment of spray formed AISI M2 high-speed steel tools, Mater. Sci. Forum 530, 315–320 (2006) [CrossRef] [Google Scholar]
  15. G.Q. Zhang, H. Yuan, D.L. Jiao et al., Microstructure evolution and mechanical properties of T15 high speed steel prepared by twin-atomiser spray forming and thermo-mechanical processing, Mater. Sci. Eng. A 558, 566–571 (2012) [CrossRef] [Google Scholar]
  16. Y. Ikawa, T. Itami, K. Kumagai et al., Spray deposition method and its application to the production of mill rolls, ISIJ Int. 30, 756–563 (1990) [CrossRef] [Google Scholar]
  17. H.B. Wang, L.G. Hou, J.X. Zhang et al., The secondary precipitates of niobium-alloyed M3:2 high speed steel prepared by spray deposition, Mater. Character. 106, 245–254 (2015) [CrossRef] [Google Scholar]
  18. S. Karagöz, H.F. Fischmeister, Niobium-alloyed high speed steel by powder metallurgy, Metall. Trans. A 191, 1395–1401 (1988) [CrossRef] [Google Scholar]
  19. J.H. Ahn, Y.J. Kim, S. Lee et al., Effect of niobium on the mechanical properties of powder metallurgy processed high-speed steels, Z. Metallkd. 96, 1426–1430 (2005) [CrossRef] [Google Scholar]
  20. H. Halfa, M. Eissa, K. EI-Fawakhry, Effect of nitrogen and niobium on the structure and secondary hardening of super hard high speed tool steel, Steel Res. Int. 83, 32–42 (2012) [CrossRef] [Google Scholar]
  21. A.S. Chaus, Modifying cast tungsten-molybdenum high-speed steels with niobium, zirconium, and titanium, Metal Sci. Heat Treatment 47, 53–61 (2005) [CrossRef] [Google Scholar]
  22. Y.K. Luan, N.N. Song, Y.L. Bai et al., Effect of solidification rate on the morphology and distribution of eutectic carbides in centrifugal casting high-speed steel rolls, J. Mater. Process Technol. 210, 536–541 (2010) [CrossRef] [Google Scholar]
  23. H.F. Fischmeister, R. Riedl, S. Karagöz, Solidification of high-speed tool steels, Metall. Mater. Trans. A 20, 2133–2148 (1989) [CrossRef] [Google Scholar]
  24. E.S. Lee, W.J. Park, K.H. Baik et al., Different carbide types and their effect on bend properties of a spray-formed high speed steel, Scr. Mater. 39, 1133–1138 (1998) [CrossRef] [Google Scholar]
  25. G. Zepon, N. Ellendt, V. Uhlenwinkel et al., Solidification sequence of spray-formed steels, Metall. Mater. Trans. A 47, 842–851 (2016) [CrossRef] [Google Scholar]
  26. E.S. Lee, W.J. Park, J.Y. Jung et al., Solidification microstructure and M2C carbide decomposition in a spray-formed high-speed steel, Metall. Mater. Trans. A 29, 1395–1404 (1998) [CrossRef] [Google Scholar]
  27. X.F. Zhou, F. Fang, F. Li et al., Refining carbide dimensions in AISI M2 high speed steel by increasing solidification rates and spheroidising heat treatment, Mater. Sci. Technol. 30, 116–122 (2014) [CrossRef] [Google Scholar]
  28. S. Karagӧz, H.F. Fischmeister, Cutting performance and microstructure of high speed steels: contributions of matrix strengthening and undissolved carbides, Metall. Mater. Trans. A 29, 205–216 (1998) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.