Issue
Metall. Res. Technol.
Volume 119, Number 1, 2022
Article Number 106
Number of page(s) 10
DOI https://doi.org/10.1051/metal/2021099
Published online 10 January 2022
  1. R.R. Boyer, An overview on the use of titanium in the aerospace industry, Mater. Sci. Eng. A 213, 103–114 (1996) [CrossRef] [Google Scholar]
  2. B. Callegari, J.P. Oliveira, R.S. Coelho et al., In-situ synchrotron radiation study of the aging response of ti-6al-4v alloy with different starting microstructures, Mater. Charact. 165, 110400–110423 (2020) [CrossRef] [Google Scholar]
  3. B. Callegari, J.P. Oliveira, K. Aristizabal et al., New insights into the microstructural evolution of Ti-5Al-5Mo-5V-3Cr alloy during hot working, Mater. Charact. 162, 110180 (2020) [CrossRef] [Google Scholar]
  4. J.R. Kennedy, P.N. Adler, H. Margolin, Effect of activity differences on hydrogen migration in dissimilar titanium alloy welds, Metall. Mater. Trans. A 24, 2763–2771 (1993) [CrossRef] [Google Scholar]
  5. Y. Zhang, Y.K. Chen, J.P. Zhou et al., Microstructure and mechanical property in laser welding-brazing of stainless steel and titanium alloy using 63Sn-37Pb alloy as filler metal, Weld. World 64, 257–266 (2020) [CrossRef] [Google Scholar]
  6. T. Mohandas, G.M. Reddy, Effect of frequency of pulsing in gas tungsten arc welding on the microstructure and mechanical properties of titanium alloy welds: a technical note, J. Mater. Sci. Lett. 15, 626–628 (1996) [CrossRef] [Google Scholar]
  7. A. Elrefaey, L. Wojarski, W. Tillmann, Preliminary investigation on brazing performance of Ti/Ti and Ti/steel joints using copper film deposited by PVD technique, J. Mater. Eng. Perform 21, 696–700 (2012) [CrossRef] [Google Scholar]
  8. Y. Chen, S. Chen, L. Li, Influence of interfacial reaction layer morphologies on crack initiation and propagation in Ti/Al joint by laser welding-brazing, Mater. Des. 31, 227–233 (2010) [CrossRef] [Google Scholar]
  9. C.H. Muralimohan, V. Muthupandi, K. Sivaprasad, The influence of aluminium intermediate layer in dissimilar friction welds, Int. J. Mater. Res. 105, 350–357 (2014) [CrossRef] [Google Scholar]
  10. S. Chen, L. Li, Y. Chen et al., Joining mechanism of ti/al dissimilar alloys during laser welding-brazing process, J. Alloy. Compd. 509, 891–898 (2011) [CrossRef] [Google Scholar]
  11. U.K. Mudali, R.K. Dayal, J.B. Gnanamoorthy, Corrosion studies on materials of construction for spent nuclear fuel reprocessing plant equipment, J. Alloy. Compd. 203, 73–82 (1993) [Google Scholar]
  12. R.S. Tashi, S. Mousavi, M.M. Atabaki, Diffusion brazing of Ti-6Al-4V and austenitic stainless steel using silver-based interlayer, Mater. Des. 54, 161–167 (2014) [CrossRef] [Google Scholar]
  13. W. Ying, J. Man, Z. Yang et al., Acuum brazing of Ti2AlNb and TC4 alloys using Ti–Zr–Cu–Ni and Ti–Zr–Cu–Ni + Mo filler metals: microstructural evolution and mechanical properties, Arch. Civ. Mech. Eng. 18, 546–556 (2018) [CrossRef] [Google Scholar]
  14. R.K. Shiue, S.K. Wu, C.H. Chan et al., Infrared brazing of Ti6Al4V and 17-4 ph stainless steel with a nickel barrier layer, Arch. Civ. Mech. Eng. 37, 2207–2217 (2006) [Google Scholar]
  15. J.P. Oliveira, J. Shen, Z. Zeng et al., Dissimilar laser welding of a cocrfemnni high entropy alloy to 316 stainless steel, Scr. Mater. 206, 114219–114226 (2021) [Google Scholar]
  16. K. Szymlek, Review of titanium and steel welding methods, Adv. Mater. Sci. 8, 186–194 (2008) [Google Scholar]
  17. G. Satoh, Y.L. Yao, C. Qiu, Strength and microstructure of laser fusion-welded Ti-SS dissimilar material pair, Int. J. Adv. Manuf. Technol. 66, 469–479 (2013) [CrossRef] [Google Scholar]
  18. M. Ferrante, E.V. Pigoretti, Diffusion bonding of Ti-6Al-4V and AISI316L stainless steel: mechanical resistance and interface micro-structure, J. Mater. Sci. 37, 2825–2833 (2002) [CrossRef] [Google Scholar]
  19. C.H. Muralimohan, M. Ashfaq, R. Ashiri et al., Analysis and characterization of the role of the interlayer in the friction welding of titanium and 304 austenitic stainless steel, Metall. Mater. Trans. A 47, 347–359 (2016) [CrossRef] [Google Scholar]
  20. J.G. Lee, J.K. Lee, S.M. Hong et al., Microstructure and bonding strength of titanium-to-stainless steel joints brazed using a Zr–Ti–Ni–Cu–Be amorphous filler alloy, J. Mater. Sci. 45, 6837–6840 (2010) [CrossRef] [Google Scholar]
  21. H. Dong, Z. Yang, Z. Wang et al., Vacuum brazing TC4 titanium alloy to 304 stainless steel with Cu-Ti-Ni-Zr-V amorphous alloy foil, J. Mater. Eng. Perform. 23, 3770 –3777 (2014) [CrossRef] [Google Scholar]
  22. H.S. Ren, H.P. Xiong, B. Chen et al., Vacuum brazing of Ti3Al-based alloy to Tial using Tizrcuni(Co) fillers, J. Mater. Process. Technol. 224, 26–32 (2015) [CrossRef] [Google Scholar]
  23. Y. Xia, P. Li, X. Hao et al., Interfacial microstructure and mechanical property of TC4 titanium alloy/316L stainless steel joint brazed with Ti-Zr-Cu-Ni-V amorphous filler metal, J. Manuf. Process. 35, 382–395 (2018) [CrossRef] [Google Scholar]
  24. Y.J. Jing, X.S. Yue, X.Q. Gao, The influence of Zr content on the performance of TiZrCuNi brazing filler, J. Manuf. Process 678, 190–196 (2016) [Google Scholar]
  25. C.T. Chang, Z.Y. Wu, R.K. Shiue et al., Infrared brazing Ti-6Al-4V and SP-700 alloys using the Ti-20Zr-20Cu-20Ni braze alloy, Mater. Lett. 61, 842–845 (2007) [CrossRef] [Google Scholar]
  26. J.P. Shu, L.S. Lu, P.X. Hua et al., A multicomponent TiZr-based amorphous brazing filler metal for high-strength joining of titanium alloy, Scr. Mater. 117, 55–59 (2016) [CrossRef] [Google Scholar]
  27. H. Dong, Z. Yang, G. Yang et al., Vacuum brazing of TiAl alloy to 40Cr steel with Ti60Ni22Cu10Zr8 alloy foil as filler metal, Sci. Eng. A 561, 252–258 (2013) [CrossRef] [Google Scholar]
  28. G. Wang, Y. Huang, G. Wang et al., Brazing of Ti2 AlNb based alloy with amorphous Ti-Cu-Zr-Ni filler, Technol. Mat. Sci. Edit. 30, 617–621 (2015) [Google Scholar]
  29. Y. Xia, H. Dong, X. Hao et al., Microstructure evolution of TC4 titanium alloy/316L stainless steel dissimilar joint vacuum-brazed with Ti-Zr-Cu amorphous filler metal, Weld. World 63, 323–336 (2019) [CrossRef] [Google Scholar]
  30. Z. Zou, F. Zeng, H. Wu et al., The joint strength and fracture mechanisms of TC4/TC4 and TA0/TA0 brazed with Ti-25Cu-15Ni braze alloy, J. Mater. Eng. Perform. 26, 2079–2085 (2017) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.