The Citing articles tool gives a list of articles citing the current article. The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program . You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).
Cited article:
J. Plateau , G. Henry , C. Crussard
Rev. Met. Paris, 54 3 (1957) 200-216
Published online: 2017-03-09
This article has been cited by the following article(s):
39 articles
Mechanisms and micromechanics of intergranular ductile fracture
C. Sénac International Journal of Solids and Structures 301 112951 (2024) https://doi.org/10.1016/j.ijsolstr.2024.112951
Coupling a void growth model with an elastoplastic material model for a simultaneous prediction of the borehole plastic zone and critical collapse pressure
Oluwafemi Oyedokun Geoenergy Science and Engineering 233 212448 (2024) https://doi.org/10.1016/j.geoen.2023.212448
3 (2024) https://doi.org/10.31399/asm.hb.v12.a0006872
A critical review on fractographic studies of steel cord and bead wire used in tyre reinforcement
Ramesh Shilavant, Barun Kumar Samui, Jagannath Chanda, Prasenjit Ghosh, Rabindra Mukhopadhyay and Shib Shankar Banerjee Progress in Rubber, Plastics and Recycling Technology 40 (1) 98 (2024) https://doi.org/10.1177/14777606231201866
Void growth yield criteria for intergranular ductile fracture
C. Sénac, J. Hure and B. Tanguy Journal of the Mechanics and Physics of Solids 172 105167 (2023) https://doi.org/10.1016/j.jmps.2022.105167
Predicting ductile fracture during extended Miyauchi shear testing using analytical model
Kazutake Komori International Journal of Solids and Structures 275 112320 (2023) https://doi.org/10.1016/j.ijsolstr.2023.112320
Void-Induced Ductile Fracture of Metals: Experimental Observations
Wiktor Wciślik and Sebastian Lipiec Materials 15 (18) 6473 (2022) https://doi.org/10.3390/ma15186473
A multi-surface plasticity model for ductile fracture simulations
Shyam M. Keralavarma Journal of the Mechanics and Physics of Solids 103 100 (2017) https://doi.org/10.1016/j.jmps.2017.03.005
Failure of metals I: Brittle and ductile fracture
A. Pineau, A.A. Benzerga and T. Pardoen Acta Materialia 107 424 (2016) https://doi.org/10.1016/j.actamat.2015.12.034
Characterization of Minerals, Metals, and Materials 2015
Gregory Gerstein, Hans-Bernward Besserer, Florian Nürnberger and Hans Jürgen Maier Characterization of Minerals, Metals, and Materials 2015 75 (2015) https://doi.org/10.1007/978-3-319-48191-3_9
Gregory Gerstein, Hans‐Bernward Besserer, Florian Nürnberger and Hans Jürgen Maier 73 (2015) https://doi.org/10.1002/9781119093404.ch9
Advances in Applied Mechanics Volume 44
A. Amine Benzerga and Jean-Baptiste Leblond Advances in Applied Mechanics, Advances in Applied Mechanics Volume 44 44 169 (2010) https://doi.org/10.1016/S0065-2156(10)44003-X
Micromechanical modeling of the rolling of a A1050P aluminum sheet
M. Ould Ouali and M. Aberkane International Journal of Material Forming 2 (1) 25 (2009) https://doi.org/10.1007/s12289-008-0387-3
Plastic potentials for anisotropic porous solids
Ahmed Amine Benzerga and Jacques Besson European Journal of Mechanics - A/Solids 20 (3) 397 (2001) https://doi.org/10.1016/S0997-7538(01)01147-0
An analysis of ductile failure by grain boundary void growth
R. Becker, A. Needleman, S. Suresh, V. Tvergaard and A.K. Vasudevan Acta Metallurgica 37 (1) 99 (1989) https://doi.org/10.1016/0001-6160(89)90270-8
Grain boundary ductile fracture in precipitation hardened aluminum alloys
A.K. Vasudévan and R.D. Doherty Acta Metallurgica 35 (6) 1193 (1987) https://doi.org/10.1016/0001-6160(87)90001-0
Fractography
Fractography 1 (1987) https://doi.org/10.31399/asm.hb.v12.a0001830
Ductile fracture
W.M. Garrison and N.R. Moody Journal of Physics and Chemistry of Solids 48 (11) 1035 (1987) https://doi.org/10.1016/0022-3697(87)90118-1
Microstructural aspects of fracture by dimpled rupture
R. H. Van Stone, T. B. Cox, J. R. Low and J. A. Psioda International Metals Reviews 30 (1) 157 (1985) https://doi.org/10.1179/imtr.1985.30.1.157
Fatigue failure of metals
S. Kocańda Fatigue failure of metals 269 (1978) https://doi.org/10.1007/978-94-009-9914-5_5
Intergranularfailure in steel: the role of grain-boundary composition
C. L. Briant and S. K. Banerji International Metals Reviews 23 (1) 164 (1978) https://doi.org/10.1179/imtr.1978.23.1.164
The microstructure picture in plastic and quasibrittle fracture of armco iron
R. F. Merenkova and P. F. Koshelev Strength of Materials 7 (9) 1119 (1975) https://doi.org/10.1007/BF01522586
Influence of heat treatment on the fatigue crack growth rates of a secondary hardening steel
R. M. Horn Metallurgical Transactions A 6 (8) (1975) https://doi.org/10.1007/BF02641963
Electron-fractographic study of low-carbon steel containing 9% chromium
A. I. Rizol, T. P. Vashchilo and D. I. Zalibakin Soviet Materials Science 7 (1) 45 (1973) https://doi.org/10.1007/BF00723011
Microstructural Analysis
I. Le May Microstructural Analysis 153 (1973) https://doi.org/10.1007/978-1-4615-8693-7_7
The effect of trace impurities on the stress-corrosion cracking susceptibility and fracture toughness of 18Ni maraging steel
R.P.M. Procter and H.W. Paxton Corrosion Science 11 (10) 723 (1971) https://doi.org/10.1016/S0010-938X(71)80006-9
Hot Shortness of α-Brass
Osamu Izumi and Yuzo Harada Transactions of the Japan Institute of Metals 11 (4) 292 (1970) https://doi.org/10.2320/matertrans1960.11.292
Paper 4: Electron Optical Techniques of Failure Investigation
D. Scott, B. Loy, R. McCallum and G. H. Mills Proceedings of the Institution of Mechanical Engineers, Conference Proceedings 184 (2) 25 (1969) https://doi.org/10.1243/PIME_CONF_1969_184_036_02
JL McCall 3 (1968) https://doi.org/10.1520/STP31999S
Effects of microstructure on fracture toughness of high strength alloys
John R. Low Engineering Fracture Mechanics 1 (1) 47 (1968) https://doi.org/10.1016/0013-7944(68)90015-5
Fracture of Metals, Polymers, and Glasses
C. J. McMahon Fracture of Metals, Polymers, and Glasses 247 (1967) https://doi.org/10.1007/978-1-4684-3153-7_11
The formation of necking in polycrystalline steel
P. S. Theocaris and E. Marketos Acta Mechanica 3 (2) 103 (1967) https://doi.org/10.1007/BF01453710
W. R. Warke and J. L. Mccall 1 (1964) https://doi.org/10.4271/640126
The fracture of metals
John R. Low Progress in Materials Science 12 3 (1963) https://doi.org/10.1016/0079-6425(63)90036-7
W. C. Bigelow 58 (1962) https://doi.org/10.1520/STP43679S
The fine structure of brittle fractures
Yu. S. Veselyanskiy and V. R. Golik Metal Science and Heat Treatment of Metals 4 (5-6) 207 (1962) https://doi.org/10.1007/BF00819273
Observations of Fatigue Fracture Surfaces of High Carbon Steels and Several Other Steels by Electron Microscopy
Akira Tokuda Transactions of the Japan Institute of Metals 2 (4) 239 (1961) https://doi.org/10.2320/matertrans1960.2.239
Observation of the Fatigue Fracture Surface of Some Carbon Steels by Electron Microscope
Akira Tokuda Transactions of the Japan Institute of Metals 1 (2) 108 (1960) https://doi.org/10.2320/matertrans1960.1.108
Effets de l'hydrogene sur les caracteristiques de rupture par traction d'aciers inoxydables
R. Blanchard, J. Pelissier and M. Pluchery Journal of Nuclear Materials 2 (3) 216 (1960) https://doi.org/10.1016/0022-3115(60)90056-8