The Citing articles tool gives a list of articles citing the current article. The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program . You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).
Cited article:
N. Philis
Rev. Met. Paris, 70 11 (1973) 831-834
Published online: 2017-03-05
This article has been cited by the following article(s):
21 articles
Deformation Mechanisms and Biocompatibility of the Superelastic Ti–23Nb–0.7Ta–2Zr–0.5N Alloy
P. Castany, D. M. Gordin, S. I. Drob, et al. Shape Memory and Superelasticity 2 (1) 18 (2016) https://doi.org/10.1007/s40830-016-0057-0
Martensitic transformation between competing phases in Ti–Ta alloys: a solid-state nudged elastic band study
Tanmoy Chakraborty, Jutta Rogal and Ralf Drautz Journal of Physics: Condensed Matter 27 (11) 115401 (2015) https://doi.org/10.1088/0953-8984/27/11/115401
Martensitic Transformation and Superelastic Properties of Ti-Nb Base Alloys
Hee Young Kim and Shuichi Miyazaki MATERIALS TRANSACTIONS 56 (5) 625 (2015) https://doi.org/10.2320/matertrans.M2014454
Composition-dependent magnitude of atomic shuffles in Ti–Nb martensites
Matthias Bönisch, Mariana Calin, Lars Giebeler, et al. Journal of Applied Crystallography 47 (4) 1374 (2014) https://doi.org/10.1107/S1600576714012576
An alternative way to orient the parent phase in the cubic/orthorhombic martensitic transformation of titanium shape memory alloys
Emmanuel Bertrand, Philippe Castany and Thierry Gloriant Scripta Materialia 83 41 (2014) https://doi.org/10.1016/j.scriptamat.2014.04.012
Age-hardening behavior, microstructural evolution and grain growth kinetics of isothermal ω phase of Ti–Nb–Ta–Zr–Fe alloy for biomedical applications
Y.F. Xu, D.Q. Yi, H.Q. Liu, B. Wang and F.L. Yang Materials Science and Engineering: A 529 326 (2011) https://doi.org/10.1016/j.msea.2011.09.035
Temperature-induced martensitic phase transitions in gum-metal approximants: First-principles investigations for Ti3Nb
Petr Lazar, Michal Jahnátek, Jürgen Hafner, et al. Physical Review B 84 (5) (2011) https://doi.org/10.1103/PhysRevB.84.054202
Effect of Quenching and Reheating on Isothermal Phase Transformation in Ti-15Nb-10Zr Alloy
Sengo Kobayashi, Ryoichi Ohshima, Kiyomichi Nakai and Tatsuaki Sakamoto Materials Science Forum 638-642 582 (2010) https://doi.org/10.4028/www.scientific.net/MSF.638-642.582
Estimation of the crystallographic strain limit during the reversible β ⇄ α″ martensitic transformation in titanium shape memory alloys
Yu. S. Zhukova, M. I. Petrzhik and S. D. Prokoshkin Russian Metallurgy (Metally) 2010 (11) 1056 (2010) https://doi.org/10.1134/S003602951011011X
Non-isothermal phase transformation kinetics of ω phase in TB-13 titanium alloys
Zhongbo Zhou, Minjie Lai, Bin Tang, et al. Materials Science and Engineering: A 527 (20) 5100 (2010) https://doi.org/10.1016/j.msea.2010.03.064
Martensitic transformation, shape memory effect and superelasticity of Ti–Nb binary alloys
H.Y. Kim, Y. Ikehara, J.I. Kim, H. Hosoda and S. Miyazaki Acta Materialia 54 (9) 2419 (2006) https://doi.org/10.1016/j.actamat.2006.01.019
Phase Decomposition in a Ti-13Nb-13Zr Alloy during Aging at 600°C
Sengo Kobayashi, Shintaro Nakagawa, Kiyomichi Nakai and Yasuya Ohmori MATERIALS TRANSACTIONS 43 (12) 2956 (2002) https://doi.org/10.2320/matertrans.43.2956
Low-frequency internal friction of α+β titanium alloy SP-700
X.S. Guan, H. Numakura, M. Koiwa, K. Hasegawa and C. Ouchi Materials Science and Engineering: A 272 (1) 230 (1999) https://doi.org/10.1016/S0921-5093(99)00464-5
Martensitic transformations in Ti-(16–26 at%) Nb alloys
T. Ahmed and H. J. Rack Journal of Materials Science 31 (16) 4267 (1996) https://doi.org/10.1007/BF00356449
Application of first-principles methods to binary and ternary alloy phase diagram predictions
G Rubin and A Finel Journal of Physics: Condensed Matter 7 (16) 3139 (1995) https://doi.org/10.1088/0953-8984/7/16/009
The growth of ω-phase inclusions in Ti-20 at.% Mo and the competition between elastic and surface energies
P. Fratzl, F. Langmayr, G. Vogl and W. Miekeley Acta Metallurgica et Materialia 39 (5) 753 (1991) https://doi.org/10.1016/0956-7151(91)90275-6
The compctition between the alpha and omega phases in aged Ti-Nb alloys
D. L. Moffat and D. C. Larbalestier Metallurgical Transactions A 19 (7) 1687 (1988) https://doi.org/10.1007/BF02645136
The compctition between martensite and omega in quenched Ti-Nb alloys
D. L. Moffat and D. C. Larbalestier Metallurgical Transactions A 19 (7) 1677 (1988) https://doi.org/10.1007/BF02645135
The stable and metastable Ti-Nb phase diagrams
D. L. Moffat and U. R. Kattner Metallurgical Transactions A 19 (10) 2389 (1988) https://doi.org/10.1007/BF02645466
La formation de phase ω isothermale dans l'alliage Ti-35wt.%Nb étudiée par microscopie électronique et par diffusion des rayons x aux petits angles
Olivier Lyon Journal of the Less Common Metals 81 (1) 103 (1981) https://doi.org/10.1016/0022-5088(81)90273-3
The Nb−Ti (Niobium-Titanium) system
Joanne L. Murray Bulletin of Alloy Phase Diagrams 2 (1) 55 (1981) https://doi.org/10.1007/BF02873704