Articles citing this article

The Citing articles tool gives a list of articles citing the current article.
The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program. You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).

Cited article:

Evaluation of the fatigue resistance of butt-welded joints in towers of wind turbines — a comparison of experimental studies with small scale and component tests as well as numerical based approaches with local concepts

R. Glienke, F. Kalkowsky, A. F. Hobbacher, A. Holch, M. Thiele, F. Marten, R. Kersten and K.-M. Henkel
Welding in the World 68 (5) 1143 (2024)
https://doi.org/10.1007/s40194-023-01630-3

Provisions for avoiding brittle fracture in steels used in Australasia including effects of seismic action

Adolf F. Hobbacher and Michail Karpenko
Welding in the World 66 (6) 1229 (2022)
https://doi.org/10.1007/s40194-021-01241-w

A method for directly measuring fracture toughness and determining reference temperature for RPV steels by Charpy impact test

Chenglong Wang, Zhenfeng Tong, Weihua Zhong, et al.
Engineering Fracture Mechanics 243 107526 (2021)
https://doi.org/10.1016/j.engfracmech.2021.107526

AUBI‐äquivalente Anforderungen an die Zähigkeitshochlage aus Versuchen und Schädigungssimulationen

Markus Feldmann, Sandro Citarelli, Sebastian Münstermann and Markus Könemann
Stahlbau 89 (12) 1016 (2020)
https://doi.org/10.1002/stab.202000026

Establishing new brittle fracture provisions for the Australasian steel structures standards

Adolf F. Hobbacher, Michail Karpenko, Stephen J. Hicks, Patrick Schneider and Brian Uy
Journal of Constructional Steel Research 155 20 (2019)
https://doi.org/10.1016/j.jcsr.2018.12.018

Application of damage theory to structures made from high‐strength steels

Markus Feldmann and Simon Schaffrath
Steel Construction 11 (4) 257 (2018)
https://doi.org/10.1002/stco.201800016

Bruchzähigkeit von Spundwänden Hintergründe zur Tabelle 3‐3 in EN 1993‐5

M. Feldmann, S. Citarelli, C. Prüm and A. Fagot
ce/papers 1 (5-6) 108 (2017)
https://doi.org/10.1002/cepa.573

09.12: Assessment of old mild steel structures related to brittle fracture

Lars Sieber and Richard Stroetmann
ce/papers 1 (2-3) 2451 (2017)
https://doi.org/10.1002/cepa.293

Investigation on new steel grades for construction of wind energy mills for sustainable energy supply

G. Golisch, S. Münstermann, W. Bleck, et al.
Metallurgical Research & Technology 111 (3) 147 (2014)
https://doi.org/10.1051/metal/2014025

Characterization of the Master Curve Based Fracture Toughness of ORNL TSE5 Steel and Unirradiated and Irradiated ASTM A203D 3.5 % Ni Steel by the IGCAR Procedure

P. R. Sreenivasan
Journal of ASTM International 9 (4) 1 (2012)
https://doi.org/10.1520/JAI103774

Das Master-Curve-Konzept im Rahmen des neuen Sprödbruchsicherheitsnachweises für die EN 13445

Peter Langenberg, Jörg Buchholz and Winfried Dahl
Materials Testing 47 (1-2) 62 (2005)
https://doi.org/10.3139/120.100634

Analysis of the brittle fracture avoidance model for pressure vessels in European standard

Rolf Sandsträm, Peter Langenberg and Henrik Sieurin
International Journal of Pressure Vessels and Piping 82 (11) 872 (2005)
https://doi.org/10.1016/j.ijpvp.2005.06.004

From Charpy To Present Impact Testing

Kim Wallin, Pekka Nevasmaa, Tapio Planman and Matti Valo
European Structural Integrity Society, From Charpy To Present Impact Testing 30 57 (2002)
https://doi.org/10.1016/S1566-1369(02)80006-1

Irradiation damage effects on the fracture toughness transition curve shape for reactor pressure vessel steels

K. Wallin
International Journal of Pressure Vessels and Piping 55 (1) 61 (1993)
https://doi.org/10.1016/0308-0161(93)90047-W