The Citing articles tool gives a list of articles citing the current article. The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program . You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).
Cited article:
F. Terasaki , T. Kawakami , A. Yoshikawa , N. Takano
Rev. Met. Paris, 95 12 (1998) 1519-1529
Published online: 2017-01-17
This article has been cited by the following article(s):
24 articles
Zig-Zag cracking as a possible characteristic feature of hydrogen embrittlement in a low alloy steel: Insights from in-situ TEM studies
Lin Tian, Masanobu Kubota, Reiner Kirchheim and Cynthia A. Volkert Nano Today 63 102738 (2025) https://doi.org/10.1016/j.nantod.2025.102738
Hydrogen in metallic alloys ─ embrittlement and enhanced plasticity: a review
Valentin G. Gavriljuk, Vladyslav M. Shyvaniuk and Sergey M. Teus Corrosion Reviews 42 (3) 267 (2024) https://doi.org/10.1515/corrrev-2022-0060
Hydrogen in Engineering Metallic Materials
V. G. Gavriljuk, V. M. Shyvaniuk and S. M. Teus Hydrogen in Engineering Metallic Materials 201 (2022) https://doi.org/10.1007/978-3-030-98550-9_5
Crack Initiation and Propagation Behavior of Hydrogen-induced Quasi-cleavage Fracture in X80 Pipeline Steel with Stress Concentration
Tomoka Homma, Seiya Anata, Shoma Onuki and Kenichi Takai ISIJ International 61 (10) 2654 (2021) https://doi.org/10.2355/isijinternational.ISIJINT-2021-228
Plastic deformation sequence and strain gradient characteristics of hydrogen-induced delayed crack propagation in single-crystalline Fe–Si alloy
Thanh Thuong Huynh, Motomichi Koyama, Yoshimasa Takahashi, et al. Scripta Materialia 178 99 (2020) https://doi.org/10.1016/j.scriptamat.2019.11.012
Crack Initiation and Propagation Behavior of Hydrogen-induced Quasi-cleavage Fracture in X80 Pipeline Steel with Stress Concentration
Tomoka Homma, Seiya Anata, Shoma Onuki and Kenichi Takai Tetsu-to-Hagane 106 (9) 651 (2020) https://doi.org/10.2355/tetsutohagane.TETSU-2019-126
Hydrogen-enhanced fatigue crack growth in a single-edge notched tensile specimen under in-situ hydrogen charging inside an environmental scanning electron microscope
Di Wan, Yun Deng, Jan Inge Hammer Meling, Antonio Alvaro and Afrooz Barnoush Acta Materialia 170 87 (2019) https://doi.org/10.1016/j.actamat.2019.03.032
Encyclopedia of Iron, Steel, and Their Alloys
Michihiko Nagumo Encyclopedia of Iron, Steel, and Their Alloys 1785 (2016) https://doi.org/10.1081/E-EISA-120049350
Effects of microstructures on hydrogen induced cracking of electrochemically hydrogenated double notched tensile sample of 4340 steel
Mobbassar Hassan Sk, Ruel A. Overfelt and Aboubakr M. Abdullah Materials Science and Engineering: A 659 242 (2016) https://doi.org/10.1016/j.msea.2016.02.047
Role of Hydrides and Solute Hydrogen in Embrittlement of Pure Titanium
Hiroshi Suzuki, Hiroto Fukushima and Kenichi Takai Journal of the Japan Institute of Metals 79 (3) 82 (2015) https://doi.org/10.2320/jinstmet.JC201402
Hydrogen embrittlement of austenitic stainless steels revealed by deformation microstructures and strain-induced creation of vacancies
M. Hatano, M. Fujinami, K. Arai, H. Fujii and M. Nagumo Acta Materialia 67 342 (2014) https://doi.org/10.1016/j.actamat.2013.12.039
Conformity between Mechanics and Microscopic Functions of Hydrogen in Failure
Michihiko Nagumo ISIJ International 52 (2) 168 (2012) https://doi.org/10.2355/isijinternational.52.168
Some Consequences of Hydrogen-induced Superabundant Vacancy Formation in Metals (III) ^|^#x301C;Implication for Hydrogen Embrittlement^|^#x301C;
Yuh Fukai Materia Japan 51 (1) 8 (2012) https://doi.org/10.2320/materia.51.8
Function of Hydrogen in Fracture Process
Michihiko Nagumo Materia Japan 50 (5) 205 (2011) https://doi.org/10.2320/materia.50.205
First Principles Calculation of Hydrogen Embrittlement in Iron
Noriyuki Takano Key Engineering Materials 417-418 285 (2009) https://doi.org/10.4028/www.scientific.net/KEM.417-418.285
Lattice defects dominating hydrogen-related failure of metals
K. Takai, H. Shoda, H. Suzuki and M. Nagumo Acta Materialia 56 (18) 5158 (2008) https://doi.org/10.1016/j.actamat.2008.06.031
Hydrogen diffusion and embrittlement in 7075 aluminum alloy
N. Takano Materials Science and Engineering: A 483-484 336 (2008) https://doi.org/10.1016/j.msea.2006.08.144
Possible mechanisms for the nucleation of primary fracture zones during deformation-induced phase transformations in solids: IV. Kinetic mechanisms of submicrocrack nucleation
L. S. Vasil’ev Russian Metallurgy (Metally) 2008 (1) 71 (2008) https://doi.org/10.1134/S003602950801014X
Crack Growth Process of Ni-Single Crystal with Cathodic Hydrogen Charging
H. Matsui and Noriyuki Takano Key Engineering Materials 348-349 137 (2007) https://doi.org/10.4028/www.scientific.net/KEM.348-349.137
The effect of copper precipitation on hydrogen embrittlement in iron
N. Takano, Y. Yokka and F. Terasaki Materials Science and Engineering: A 387-389 428 (2004) https://doi.org/10.1016/j.msea.2003.12.096
Effects of Hydrogen on Mechanical Behavior of Steels
Michihiko NAGUMO Tetsu-to-Hagane 90 (10) 766 (2004) https://doi.org/10.2355/tetsutohagane1955.90.10_766
Enhanced susceptibility to delayed fracture in pre-fatigued martensitic steel
M Nagumo, S Sekiguchi, H Hayashi and K Takai Materials Science and Engineering: A 344 (1-2) 86 (2003) https://doi.org/10.1016/S0921-5093(02)00403-3
Multiscale Deformation and Fracture in Materials and Structures
Jian-Sheng Wang Solid Mechanics and Its Applications, Multiscale Deformation and Fracture in Materials and Structures 84 31 (2002) https://doi.org/10.1007/0-306-46952-9_3
Effect of grain size and second phase particles on the hydrogen occlusivity of iron and steels
M. Martínez-Madrid, S.L.I. Chan, J.A. Charles, J.A. López L. and V. Castaño Materials Research Innovations 3 (5) 263 (2000) https://doi.org/10.1007/s100190000043