Metall. Res. Technol.
Volume 116, Number 5, 2019
Inclusion cleanliness in the metallic alloys
Article Number 510
Number of page(s) 8
Published online 09 August 2019
  1. L. Zhang, B.G. Thomas, X. Wang, K. Cai, Evaluation and control of steel cleanliness – Review, 85th Steelmaking Conference Proceedings, ISS-AIME, Warrendale, PA, 2002, pp. 431–452 [Google Scholar]
  2. P. Kozakévitch, M. Olette, Rôle des phénomènes superficiels dans le mécanisme d’élimination des inclusions solides, Rev. Métall. 68, 635–646 (1971) [CrossRef] [Google Scholar]
  3. S.T. Johansen, S. Taniguchi, Prediction of agglomeration and break-up of inclusions during metal refining, in: Barry Welch (Ed.), Light metals, TMS, 1998, pp. 855–861 [Google Scholar]
  4. M. Cournil, F. Gruy, P. Gardin, H. Saint-Raymond, Experimental study and modeling of inclusion aggregation in turbulent flow to improve steel cleanliness, Phys. Stat. Sol. (a) 189, 159–168 (2002) [CrossRef] [Google Scholar]
  5. F. Gruy, M. Cournil, P. Cugniet, Influence of nonwetting on the aggregation dynamics of micronic solid particles in a turbulent medium, J. Colloid Interface Sci. 284, 548–559 (2005) [Google Scholar]
  6. A.R. Kennedy, The incorporation of ceramic particles in molten aluminium and the relationship to contact angle data, Mater. Sci. Eng. A 264, 122–129 (1999) [CrossRef] [Google Scholar]
  7. M. Cournil, F. Gruy, P. Gardin, H. Saint-Raymond, Modelling of solid particle aggregation dynamics in non-wetting liquid medium, Chem. Eng. Process. 45, 586–597 (2006) [Google Scholar]
  8. T. Li, S. Shimasaki, S. Taniguchi, K. Uesugi, Turbulent coagulation of solid particles in molten aluminium: kinetics of cluster formation, 13th Int. Conf. on aluminium alloys, 2012, pp. 1337–1342 [Google Scholar]
  9. T. Li, S. Shimasaki, S. Taniguchi, S. Narita, K. Uesugi, 3-dimensional analysis of irregular shaped particles in solid aluminum, CAMP-ISIJ 17, 985 (2012) [Google Scholar]
  10. V. Oles, Shear-induced aggregation and breakup of polystyrene latex particles, J. Colloid Interface Sci. 154, 351–358 (1992) [Google Scholar]
  11. D. Chatain, L. Coudurier, N. Eustathopoulos, Wetting and interfacial bonding in ionocovalent oxide-liquid metal systems, Rev. Phys. Appl. 23, 1055–1064 (1988) [CrossRef] [Google Scholar]
  12. A. Léger, L. Weber, A. Mortensen, Infiltration of tin bronze into alumina particle beds: Influence of alloy chemistry on drainage curves, J. Mater. Sci. 49, 7669–7678 (2014) [Google Scholar]
  13. J. Lawrence, Wetting and bonding characteristics of selected liquid metals with a high power diode laser treated alumina bioceramic, Proc. R. Soc. A 460, 1723–1735 (2004) [CrossRef] [Google Scholar]
  14. D.R. Sageman, Surface tension of molten metals using the sessile drop method, PhD thesis, Iowa State University, 1972 [CrossRef] [Google Scholar]
  15. J. Hashim, L. Looney, M.S.J. Hashmi, The wettability of SiC particles by molten aluminium alloy, J. Mater. Process. Technol. 119, 324–328 (2001) [CrossRef] [Google Scholar]
  16. A. Abbasalizadeh, L. Muhmood, A. Danaei, A. Barati, A. McLean, S. Seetharaman, A sessile droplet study of iron-carbon-sulfur alloys on an alumina substrate, in: Proc. Ninth Int. Conf. Molten SlagsFluxes SaltsMOLTEN12, Beijing, 2012, p. 8, Available from [Google Scholar]
  17. G. Ramani, T.R. Ramamohan, R.M. Pillai, B.C. Pai, Stability of non-wetting dispersoid suspensions in metallic melts, Scr. Metall. Mater. 24, 1419–1424 (1990) [CrossRef] [Google Scholar]
  18. B.C. Pai, G. Ramani, R.M. Pillai, K.G. Satyanarayana, Role of magnesium in cast aluminium alloy matrix composites, J. Mater. Sci. 30, 1903–1911 (2016) [Google Scholar]
  19. B.F. Schultz, J.B. Ferguson, P.K. Rohatgi, Microstructure and hardness of Al2O3 nanoparticle reinforced Al-Mg composites fabricated by reactive wetting and stir mixing, Mater. Sci. Eng. A. 530, 87–97 (2011) [CrossRef] [Google Scholar]
  20. B.C. Pai, S. Ray, K.V. Prabhakar, P.K. Rohatgi, Fabrication of aluminium-alumina (magnesia) particulate composites in foundries using magnesium additions to the melts, Mater. Sci. Eng. 24, 31–44 (1976) [CrossRef] [Google Scholar]
  21. F.A. Badia, P.K. Rohatgi, Dispersion of graphite particles in aluminium castings through injection of the melt, Am. Foundry Soc. Trans. 76, 402–406 (1969) [Google Scholar]
  22. V. Agarwala, D. Dixit, Fabrication of aluminium base composite by foundry technique, Trans. Jpn. Inst. Met. 22, 521–526 (1981) [CrossRef] [Google Scholar]
  23. S. Tahamtan, A. Halvaee, M. Emamy, M.S. Zabihi, Fabrication of Al/A206-Al2O3 nano/micro composite by combining ball milling and stir casting technology, Mater. Des. 49, 347–359 (2013) [Google Scholar]
  24. B.C. Pai, P.K. Rohatgi, Production of cast aluminium-graphite particle composites using a pellet method, J. Mater. Sci. 13, 329–335 (2016) [Google Scholar]
  25. S. Amirkhanlou, B. Niroumand, Fabrication and characterization of Al356/SiCp semisolid composites by injecting SiCp containing composite powders, J. Mater. Process. Technol. 212, 841–847 (2012) [CrossRef] [Google Scholar]
  26. E. Saiz, R.M. Cannon, A.P. Tomsia, Reactive spreading in ceramic/metal systems, Oil Gas Sci. Technol. 56, 89–96 (2001) [CrossRef] [Google Scholar]
  27. E. Matijevic, A.M. Poskanzer, P. Zuman, The characterization of the stannous chloride/palladium chloride catalysts for electroless plating, Plat. Surf. Finish. 62, 958–965 (1975) [Google Scholar]
  28. E. Pastukhov, V. Chentsov, A. Kiselev, L. Bodrova, A. Dolmatov, E. Popova, S. Petrova, Wetting of graphite surface by the aluminium alloys melts, in: n.d [Google Scholar]
  29. P. Huber, O.G. Shpyrko, P.S. Pershan, H. Tostmann, E. DiMasi, B.M. Ocko, M. Deutsch, Wetting behavior at the free surface of a liquid gallium-bismuth alloy: An X-ray reflectivity study close to the bulk monotectic point, Colloids Surf. Physicochem. Eng. Asp. 206, 515–520 (2002) [CrossRef] [Google Scholar]
  30. N. Takahira, T. Yoshikawa, T. Tanaka, L. Holappa, Unusual wetting of liquid bismuth on a surface-porous copper substrate fabricated by oxidation-reduction process, Mater. Trans. 48, 3126–3131 (2007) [CrossRef] [Google Scholar]
  31. M. Humenik, W.D. Kingery, Metal-Ceramic Interactions: III, Surface tension and wettability of metal-ceramic systems, J. Am. Ceram. Soc. 37, 18–23 (1954) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.