Free Access
Issue
Metall. Res. Technol.
Volume 118, Number 2, 2021
Article Number 213
Number of page(s) 20
DOI https://doi.org/10.1051/metal/2021011
Published online 25 March 2021
  1. D. Eylon, S.R. Seagle, Titanium technology in the USA − an Overview, J. Mater. Sci. Technol. 17, 439 (2001) [Google Scholar]
  2. R.K. Islamgaliev, W. Buchgraber, Y.R. Kolobov, et al., Deformation behavior of Cu-based nanocomposite processed by severe plastic deformation, Mater. Sci. Eng. A 319, 872 (2001) [Google Scholar]
  3. Y.H. Chen, Research Progress of Welding Technology of Dissimilar Metals Between Titanium and Aluminum (in Chinese), Aeron. Manuf. Technol. 21, 42 (2012) [Google Scholar]
  4. E. Schubert, M. Klassen, I. Zerner, C. Walz, G. Sepold, Light-weight structures produced by laser beam joining for future applications in automobile and aerospace industry, J. Mater. Process. Tech. 115, 2 (2001) [Google Scholar]
  5. W.V. Vaidya, M. Horstmann, V. Ventzke, et al., Structure-property investigations on a laser beam welded dissimilar joint of aluminium AA6056 and titanium Ti6Al4V for aeronautical applications Part I: Local gradients in microstructure, hardness and strength, Materialwiss. Werkstofftech. 40, 623 (2010) [Google Scholar]
  6. X.H. Li, W. Mao, C.X. Cao, Q.P. Qun, Application of brazing and diffusion welding in aviation industry, Aeronaut. Manuf. Technol. 11, 28 (2004) [Google Scholar]
  7. X.Y. Wu, J. Liao, X. Xue, Y.R. Zhan, Mechanism of Crack Generation in Pulsed Laser Welded Joint of Titanium/Aluminum Dissimilar Alloy, J. Netshape Form. Eng. 10, 95 (2018) [Google Scholar]
  8. P. Peyre, L. Berthe, M. Dal, S. Pouzet, P. Sallamand, I. Tomashchuk, Generation and characterization of T40/A5754 interfaces with lasers, J. Mater. Process. Technol. 214, 1946 (2014) [Google Scholar]
  9. P. Jiang, R. Chen, Research on interfacial layer of laser welded aluminum to titanium, Mater. Charact. 154, 264 (2019) [Google Scholar]
  10. I. Tomashchuk, P. Sallamand, E. Cicala, P. Peyre, D. Grevey, Direct keyhole laser welding of aluminum alloy AA5754 to titanium alloy Ti6Al4V, J. Mater. Process. Technol. 217, 96 (2015) [Google Scholar]
  11. G. Casalino, M. Mortello, P. Peyre, Yb-YAG laser offset welding of AA5754 and T40 butt joint, J. Mater. Process. Technol. 223, 139 (2015) [Google Scholar]
  12. G. Casalino, S. D’Ostuni, P. Guglielmi, et al., Mechanical and microstructure analysis of AA6061 and Ti6Al4V fiber laser butt weld, Opt. 148, 151 (2017) [Google Scholar]
  13. F.H. Qi, P.P. Sun, P. Li, L.Y. Chen, J.Y. Hu, Study on Microstructures and Properties of Ti-Al dissimilar alloy joint by electron beam welding, Develop. Appl. Mater. 32, 63 (2017) [Google Scholar]
  14. S. Guo, Y. Peng, J. Zhu, Q. Gao, Q. Zhou, C. Cui, Microstructure and mechanical properties of laser welded Ti/Al alloys, Chin. J. Lasers 45, 102 (2018) [Google Scholar]
  15. R. Wang, X.Y. Kan, Y. Zhao, J.S. Zou, C. Liu, Microstructure and properties of laser welding-brazing joint of Ti/Al dissimilar alloys, J. Jiangsu Univ. Sci. Technol. 31, 153 (2017) [Google Scholar]
  16. T. Lan, P. Dong, R.S. Xiao, Analysis of laser deep penetration brazing of aluminium and titanium alloys, Trans. China Weld. Inst. 31, 109 (2010) [Google Scholar]
  17. T. Lan, Study of dissimilar metal Al/Ti laser welding, Beijing University of Technology, MA thesis, 2009 [Google Scholar]
  18. K.H. Chen, Study on laser penetration welding-brazing of Al/Ti dissimilar alloys, Beijing University of Technology, MA thesis, 2011 [Google Scholar]
  19. Z.H. Song, Influence of laser offset on microstructure and mechanical properties of Ti/Al dissimilar joint by laser welding, in: Welding Society and Pressure Welding, Committee of China Society of Mechanical Engineering, 2011 [Google Scholar]
  20. X. Chen, Z.L. Lei, Y.B. Chen, et al., Microstructure and tensile properties of Ti/Al dissimilar joint by laser welding-brazing at subatmospheric pressure, J. Manuf. Process. 56, 19 (2020) [Google Scholar]
  21. A. Malikov, I. Vitoshkin, A. Orishich, A. Filippov, E. Karpov, Microstructure and mechanical properties of laser welded joints of Al-Cu-Li and Ti-Al-V alloys, J. Manuf. Process. 53, 201 (2020) [Google Scholar]
  22. L. Guo, X. Zhang, Y. Chen, Q.M. Zhang, G.J. Lu, Research on laser welding of titanium/aluminum dissimilar alloy, Weld. Digest Mach. Manuf. 02, 14 (2018) [Google Scholar]
  23. L. Guo, Z.H. Wu, Y. Chen, Q.M. Zhang, Q.Y. Ma, Effect of Scanning Speed on Laser Welding Quality of Ti/Al Dissimilar Alloys, Appl. Laser 38, 230 (2018) [Google Scholar]
  24. S.V. Kuryntsev, Microstructure,mechanical and electrical properties of laser-welded overlap joint of CP Ti and AA2024, Opt. Lasers Eng. 112, 77 (2019) [Google Scholar]
  25. S.J. Lee, M. Takahash, Y. Kawahito, S. Katayama, Microstructural evolution and characteristics of weld fusion zone in high speed dissimilar welding of Ti and Al, Int. J. Precis. Eng. Manuf. 16, 10 (2015) [Google Scholar]
  26. S.P. Qu, X.J. Wang, H.Y. Xu, X.H. Sang, Defect analysis of aluminum-titanium dissimilar alloy electron beam welded joint, Electric. Weld. Mach. 49, 97 (2019) [Google Scholar]
  27. S.P. Qu, X.J. Wang, H.Y. Xu, X.H. Sang, Analysis of microstructure and interface of aluminum-titanium alloy electron beam welded joints, Aeronaut. Manuf. Technol. 62, 74 (2019) [Google Scholar]
  28. P. Leo, S. D’Ostuni, G. Casalino, Low temperature heat treatments of AA5754-Ti6Al4V dissimilar laser welds: Microstructure evolution and mechanical properties, Opt. Laser Technol. 100, 109 (2018) [Google Scholar]
  29. B. Majundar, R. Jalun, A. Weisheit, B.L. Mordike, Formation of a crack-free joint between Ti alloy and Al alloy by using a high power CO2 laser, J. Mater. Sci. 32, 61 (1997) [Google Scholar]
  30. J.M. Ni, L.Q. Li, Y.B. Chen, X.S. Feng, Characteristics of laser welding-brazing joint of Al/Ti dissimilar alloys, Chin. J. Nonferrous Met. 17, 617 (2007) [Google Scholar]
  31. C.W. Zang, J.G. Liu, C.W. Tan, et al., Laser conduction welding characteristics of dissimilar metals Mg/Ti with Al interlayer, J. Manuf. Process. 32, 595 (2018) [Google Scholar]
  32. X.Y. Gu, K.X. Zhu, C.L. Sui, Z.Y. Meng, Control of microstructure and property of pulse laser welded joint of agnesium/titanium alloy, Chin. J. Laser 47, 106 (2020) [Google Scholar]
  33. K.P. Zhang, J.G. Liu, C.W. Tan, et al., Dissimilar joining of AZ31B Mg alloy to Ni-coated Ti-6Al-4V by laser heat-conduction welding process, J. Manuf. Process. 34, 148 (2018) [Google Scholar]
  34. Z.L. Lei, P. Li, X.R. Zhang, S.B. Wu, H. Zhou, N.N. Lu, Microstructure and mechanical properties of welding-brazing of Ti/Al butt joints with laser melting deposition layer additive, J. Manuf. Process. 38, 411 (2019) [Google Scholar]
  35. P. Li, Z.L. Lei, X.R. Zhang, J.G. Liu, Y.B. Chen, Effects of laser power on the interfacial IMCs and mechanical properties of dual-spot laser welded-brazed Ti/Al butt joint, Opt. Laser Technol. 124, 105987 (2020) [Google Scholar]
  36. Y.B. Chen, S.H. Chen, L.Q. Li, Influence of interfacial reaction layer morphologies on crack initiation and propagation in Ti/Al joint by laser welding-brazing, Mater Des. 31, 227 (2010) [Google Scholar]
  37. S.H. Chen, L.Q. Li, Y.B. Chen, J.H. Huang, Joining mechanism of Ti/Al dissimilar alloys during laser welding-brazing process, J. Alloy. Compd. 509, 891 (2011) [Google Scholar]
  38. S.H. Chen, L.Q. Li, Y.B. Chen, D.J. Liu, Si diffusion behavior during laser welding-brazing of Al alloy and Ti alloy with Al-12Si filler wire, Trans. Nonferrous Met. Soc. China 20, 64 (2010) [Google Scholar]
  39. T. Wang, H.J. Li, S.Y. Jiang, B.G. Zhang, J.C. Feng, Microstructure and mechanical properties of EBW-brazed titanium to aluminum joint using AlSi5 filler wire, Trans. China Weld. Inst. 38, 1 (2017) [Google Scholar]
  40. Y.G. Miao, Z.W. Ma, X.S. Yang, J. Liu, D.F. Han, Experimental study on microstructure and mechanical properties of AA6061/Ti-6Al-4V joints made by bypass-current MIG welding-brazing, J. Mater. Process. Technol. 260, 104 (2018) [Google Scholar]
  41. Y.F. Zhang, J.H. Huang, Z. Ye, Z. Cheng, An investigation on butt joints of Ti6Al4V and 5A06 using MIG/TIG double-side arc welding-brazing, J. Manuf. Process. 27, 221 (2017) [Google Scholar]
  42. Y.F. Zhang, J.H. Huang, Z. Ye, Z. Cheng, J. Yang, S.H. Chen, Ifluence of welding parameters on the IMCs and the mechanical properties of Ti/Al butt joints welded by MIG/TIG double-sided arc welding-brazing, J. Alloy. Compd. 747, 764 (2018) [Google Scholar]
  43. Z.J. Li, Reserach on process and mechanism of magnetic field assisted MIG welding-brazing for dissimilar alloys, Harbin Institute of Technology, 2017 [Google Scholar]
  44. T. Wang, X.P. Li, Y.Y. Zhang, H.J. Li, B.G. Zhang, J.C. Feng, Regulating the interfacial morphology of electron beam welded pure Ti/2024Al dissimilar joint, J. Mater. Process. Technol. 245, 227 (2017) [Google Scholar]
  45. C.W. Tan, X.G. Song, B. Chena, L.Q. Li, J.C. Feng, Enhanced interfacial reaction and mechanical properties of laser welded-brazed Mg/Ti joints with Al element from filler, Mater. Lett. 167, 38 (2016) [Google Scholar]
  46. C.W. Tan, B. Chen, S.H. Meng, et al., Microstructure and mechanical properties of laser welded-brazed Mg/Ti joints with AZ91 Mg based filler, Mater. Des. 99, 127 (2016) [Google Scholar]
  47. C.W. Tan, X.T. Gong, L.Q. Li, J.C. Feng, Laser welding-brazing characteristics of dissimilar metals Mg/Ti with Al interlayers, Chin. J. Lasers 42, 114 (2015) [Google Scholar]
  48. C.W. Tan, Y.H. Huang, B. Chen, L.Q. Li, J.C. Feng, Microstructure and thermodynamic behavior of laser welded-brazed Mg/Ti dissimilar joint, Chin. J. Laser 3, 87 (2016) [Google Scholar]
  49. C.W. Tan, C.W. Zang, X.Y. Zhao, et al., Influence of Ni-coating thickness on laser lap welding-brazing of Mg/Ti, Opt. Laser Technol. 108, 378 (2018) [Google Scholar]
  50. C.W. Tan, J. Yang, X.Y. Zhao, et al., Influence of Ni coating on interfacial reactions and mechanical properties in laser welding-brazing of Mg/Ti butt joint, J. Alloy. Compd. 764, 186 (2018) [Google Scholar]
  51. C.W. Tan, Q.S. Lu, B. Chen, et al., Inflfluence of laser power on microstructure and mechanical properties of laser welded-brazed Mg to Ni coated Ti alloys, Opt. Laser Technol. 89, 156 (2017) [Google Scholar]
  52. Z.Q. Zhang, C.W. Tan, X.Y. Zhao, B. Chen, X.G. Song, H.Y. Zhao, Influence of Cu coating thickness on interfacial reactions in laser welding-brazing of Mg to Ti, J. Mater. Process. Technol. 261, 61 (2018) [Google Scholar]
  53. L.J. Wu, J. Yang, C.W. Zang, et al., Butt laser welding-brazing of AZ31 Mg to Nickel-coated Ti-6Al-4V, J. Mater. Eng. Perform. 28, 4443 (2019) [Google Scholar]
  54. S.T. Auwal, S. Ramesh, F. Yusof, et al., Comparative study on characteristics of laser welded-brazed AZ31/Ti-6Al-4V lap joints with and without coatings, Adv. Manuf. Technol. 101, 1023 (2019) [Google Scholar]
  55. S.T. Auwal, S. Ramesh, Z.Q. Zhang, et al., Effect of copper-nickel interlayer thickness on laser welding-brazing of Mg/Ti alloy, Opt. Laser Technol. 115, 149 (2019) [Google Scholar]
  56. S.T. Auwal, S. Ramesh, Z.Q. Zhang, et al., Influence of electrodeposited Cu-Ni layer on interfacial reaction and mechanical properties of laser welded-brazed Mg/Ti lap joints, J. Manuf. Process. 37, 251 (2019) [Google Scholar]
  57. J.G. Liu, C.W. Tan, L.J. Wu, et al., Butt laser welding-brazing of AZ31Mg alloy to Cu coated Ti-6Al-4V with AZ92 Mg based filler, Opt. Laser Technol. 117, 200 (2019) [Google Scholar]
  58. Z.Q. Liu, P.L. Zhang, S.W. Li, D. Wu, Z.S. Yu, Wire and arc additive manufacturing of 4043 Al alloy using a cold metal transfer method, Int. J. Miner. Metall. Mater. 27, 783 (2020) [Google Scholar]
  59. M. Gao, C. Chen, Y.Z. Gu, X.Y. Zeng, Microstructure and tensile behavior of laser arc hybrid welded dissimilar Al and Ti alloys, Mater. 7, 1590 (2014) [Google Scholar]
  60. A. Schierl, The CMT-process-A revolution in welding technology, Weld. World. 49, 38 (2005) [Google Scholar]
  61. J.P. Jia, K.Q. Bi, D. Li, Y.F. Li, Research status and prospect of cold metal transfer, Hot Work. Technol. 1, 6 (2015) [Google Scholar]
  62. Q.J. Sun, J.Z. Li, Y.B. Liu, B.P. Li, P.W. Xu, J.C. Feng, Microstructural characterization and mechanical properties of Al/Ti joint welded by CMT method – Assisted hybrid magnetic fifield, Mater. Des. 116, 316 (2017) [Google Scholar]
  63. R. Cao, T. Wang, C. Wang, Z. Feng, Q. Lin, H. Chen, Cold metal transfer welding-brazing of pure titanium TA2 to magnesium alloy AZ31B, J. Alloy. Compd. 605, 12 (2014) [Google Scholar]
  64. C. Wang, R. Cao, Q.L. Lin, Q. Wang, C. Dong, J.H. Chen, Numerical simulation on temperature distribution of cold metal transfer joining magnesium to titanium dissimilar metals, Trans. China Weld. lnst. 36, 17 (2015) [Google Scholar]
  65. C. Wang, Numerical simulation on temperature distribution of Cold Metal Transfer joining magnesium to titanium dissimilar metals, Lanzhou University of Technology, MA thesis, 2011 [Google Scholar]
  66. H.Y. Che, G.H. Liu, C. Wang, H.Y. Zhang, R. Cao, Finite element simulation on stress field of Mg/Ti dissimilar metal joint welded by cold metal transfer method. Mater. Mech. Eng. 41, 105 (2017) [Google Scholar]
  67. W.J. Rao, Z.Y. Wang, S.Z. Wei, Research progress on welding-brazing of titanium/aluminum dissimilar light-weight alloys, Hot Work. Technol. 48, 17 (2019) [Google Scholar]
  68. Y.M. Sun, Z.Q. Zhang, C.W. Tan, X.Y. Zhao, B. Ye, Laser spot welding characteristics of dissimilar metals: TC4 titanium/5052 aluminum, Laser Opt. Progr. 56, 205 (2019) [Google Scholar]
  69. Z.T. Zhu, W. Wang, Y.X. Li, H. Chen, Effect of laser-arc offset and laser-deviation angle on the control of a Ti-Al interlayer, J. Mater. Process. Technol. 271, 336 (2019) [Google Scholar]
  70. W. Wang, Process, interface regulation of titanium alloy/aluminum alloy dissimilar joint by using laser-MIG hybrid welding-brazing, Southwest Jiaotong University, MA thesis, 2019 [Google Scholar]
  71. Y.F. Zhang, J.H. Huang, Z. Ye, Z. Cheng, An investigation on butt joints of Ti6Al4V and 5A06 using MIG/TIG double-side arc welding-brazing, J. Manuf. Process. 27, 221 (2017) [Google Scholar]
  72. Y.F. Zhang, J.H. Huang, Z. Ye, Z. Cheng, J. Yang, Influence of welding parameters on the IMCs and the mechanical properties of Ti/Al butt joints welded by MIG/TIG double-sided arc welding-brazing, J. Alloy. Compd. 747, 764 (2018) [Google Scholar]
  73. Y.H. Chen, Q. Ni, L.M. Ke, Interface characteristic of friction stir welding lap joints of Ti/Al dissimilar alloys, Trans. Nonferrous Met. Soc. China. 22, 299 (2012) [Google Scholar]
  74. T. Takemoto, I. Okamoto, IMCs formed during brazing of titanium with aluminum filler metals, J. Mater. Sci. 6, 1301 (1988) [Google Scholar]
  75. T.W. Lee, I.K. Kim, C.H. Lee, J.H. Kim, Growth behavior of intermetallic compound layer in sandwich-type Al/Ti diffusion couples inserted with Al-Si-Mg Alloy foil, J. Mater. Sci. Lett. 18, 1599 (1999) [Google Scholar]
  76. W.H. Sohn, H.H. Bong, S.H. Hong, Microstructure and bonding mechanism of Al/Ti bonded joint using Al-10Si-Mg filler metal, Mater. Sci. Eng. A 335, 231 (2003) [Google Scholar]
  77. W.Q. Qu, F. Dong, Z.G. Qi, H.T. Zhuang, W. Meng, Joining of dissimilar materials, Aerospace Manuf. Technol. 3, 44 (2006) [Google Scholar]
  78. X.G. Chen, R.S. Xie, Z. Lei, G. Zou, J. Yan, Ultrasonic-assisted brazing of Al-Ti dissimilar alloy by a filler metal with a large semi-solid temperature range, Materials & Design 95, 296 (2016) [Google Scholar]
  79. P.F. Zhao, H. Kang, Study on Vacuum Brazing of Dissimilar Alloys of Al-Ti, J. Mater. Eng. 4, 26 (2001) [Google Scholar]
  80. H. Kang, G. Hu, P.F. Zhao, P. Qu, Infloence of stannum, gallium on vacuum brazing of aluminum and titanium dissimilar alloy, Weld. Join. 6, 14 (2001) [Google Scholar]
  81. S.Y. Chang, L.C. Tsao, Y.H. Lei, S.M. Mao, C.H. Huang, Brazing of 6061 aluminum alloy/Ti-6Al-4V using Al-Si-Cu-Ge filler metals, J. Mater. Process. Technol. 212, 8 (2012) [Google Scholar]
  82. Q.J. Wang, Z.M. Xue, S.H. Yang, Brazing technology of titanium alloy, stainless steel and aluminum alloy pipe structures, Aerospace Manuf. Technol. 6, 25 (2007) [Google Scholar]
  83. Y. Zhang. Study on interfacial behavior and precoating titanium to aluminum by ultrasonic assisted medium-low temperature induction soldering, Harbin Institute of Technology, MA thesis, 2017 [Google Scholar]
  84. X.Y. Song, Study on vacuum diffusion bonding of aluminum with titanium and tantalum, Yanshan University, MA thesis, 2016 [Google Scholar]
  85. W. Yao, A.P. Wu, G.S. Zou, J.L. Ren, Structure and forming process of the Ti/Al diffusion bonding joints, Rare Met. Mater. Eng. 36, 700 (2007) [Google Scholar]
  86. Y.J. Li, S.A. Gerasimov, J. Wang, H.J. Ma, A study of vacuum diffusion bonding and interface structure of Ti/Al dissimilar materials, Mater. Sci. Technol. 15, 206 (2007) [Google Scholar]
  87. A.M. Atieh, T.I. Khan, Application of Ni and Cu nanoparticles in transient liquid phase (TLP) bonding of Ti-6Al-4V and Mg-AZ31 alloys, J. Mater. Sci. 49, 7648 (2014) [Google Scholar]
  88. A.M. Atieh, T.I. Khan, TLP bonding of Ti-6Al4V and MgAZ31 alloys using pure Ni electro-deposited coats, J. Mater. Process. Technol. 214, 3158 (2014) [Google Scholar]
  89. Q. Qin, Study on the Mg alloy and Ti alloy joint by transient liquid phase bonding process, Xi’an University of Science and Technology, MA thesis, 2015 [Google Scholar]
  90. J.P. Chen, Y. Ge, Research on microstructure and mechanical properties of TLP diffusion bonding Mg/Ni/Ti joint, Hot Work. Technol. 21, 246 (2016) [Google Scholar]
  91. Z.W. Chen, S. Yazdanian, Microstructures in interface region and mechanical behaviours of friction stir lap Al6060 to Ti-6Al-4V welds, Mater. Sci. Eng. A 634, 37 (2015) [Google Scholar]
  92. Y.H. Chen, H.B. Deng, H. Liu, T.M. Zhang, S.H. Li, A novel strategy for the reliable joining of Ti6Al4V/2A12-T4 dissimilar alloys via friction melt-bonded spot welding, Mater. Lett. 253, 306 (2019) [Google Scholar]
  93. G.S. Vacchi, R. Silva, A.H. Plaine, U.F.H. Suhuddin, N.G. Alcântara, V.L. Sordi, C.A.D. Rovere, Refill friction stir spot welded AA5754-H22/Ti-6Al-4V joints: Microstructural characterization and electrochemical corrosion behavior of aluminum surfaces, Mater. Today Commun. 22, 2020 [Google Scholar]
  94. J.W. Choi, H.H. Liu, K. Ushioda, H. Fujii, Dissimilar friction stir welding of immiscible titanium and magnesium, Materialia 7, 2019 [Google Scholar]
  95. B. Li, Y.F. Shen, L. Luo, W.Y. Hu, Effects of processing variables and heat treatments on Al/Ti-6Al-4V interface microstructure of bimetal clad-plate fabricated via a novel route employing friction stir lap welding, J. Alloy. Compd. 658, 904 (2016) [Google Scholar]
  96. Z.W. Ma, Y.Y. Jin, S.D. Ji, X.C. Meng, L. Ma, Q.H. Li, A general strategy for the reliable joining of Al/Ti dissimilar alloys via ultrasonic assisted friction stir welding, J. Mater. Process. Technol. 35, 94 (2019) [Google Scholar]
  97. H.Y. Zhao, M.R. Yu, Z.Y. Jiang, L. Zhou, X.G. Song, Interfacial microstructure and mechanical properties of Al/Ti dissimilar joints fabricated via friction stir welding, J. Alloy. Compd. 789, 139 (2019) [Google Scholar]
  98. V.F. Pereira, E.B. Fonseca, A.M.S. Costa, J. Bettini, E.S.N. Lopes, Nanocrystalline structural layer acts as interfacial bond in Ti/Al dissimilar joints produced by friction stir welding in power control mode, Scr. Mater. 174, 80 (2020) [Google Scholar]
  99. M.R. Yu, H.Y. Zhao, Z.H. Jiang, F. Guo, L. Zhou, X.G. Song, Microstructure and mechanical properties of friction stir lap AA6061-Ti6Al4V welds, J. Mater. Process. Technol. 270, 274 (2019) [Google Scholar]
  100. J.W. Wu, Z.K. Zhang, P.W. Che, Influence of brazing filler Zn on microstructure and properties of titanium/aluminum joint by friction stir brazing, Mater. Rep. 33, 3067 (2019) [Google Scholar]
  101. Q.H. Li, Z.W. Ma, S.D. Ji, Q. Song, P. Gong, R. Li, Effective joining of Mg/Ti dissimilar alloys by friction stir lap welding, J. Mater. Process. Technol. 278, (2020) [Google Scholar]
  102. R.D. Li, J.L. Li, J.T. Xiong, F.S. Zhang, K. Zhao, C.Z. Ji, Friction heat production and atom diffusion behaviors during Mg−Ti rotating friction welding process, Trans. Nonferrous Met. Soc. China 22, 2665 (2012) [Google Scholar]
  103. J.W. Choi, H. Liu, K. Ushioda, H. Fujii, Effect of an Al filler material on interfacial microstructure and mechanicalproperties of dissimilar friction stir welded Ti/Mg joint, Mater. Charact. 155, 2019 [Google Scholar]
  104. J.W. Choi, H. Liu, K. Ushioda, H. Fujii, Dissimilar friction stir welding of immiscible titanium and magnesium, Materialia 7, 2019 [Google Scholar]
  105. S.D. Ji, W. Hu, Z.W. Ma, Q.H. Li, X. Gong, Friction stir lap welding of Mg/Ti dissimilar alloys using a slight penetration depth, Met. Mater. Soc. 72, 2020 [Google Scholar]
  106. Q. Song, Z.W. Ma, S.D. Ji, Q.H. Li, L.F. Wang, R. Li, Infuence of pin ofset on microstructure and mechanical properties of friction stir welded Mg/Ti dissimilar alloys, Acta Metall. Sin. 32, 1261 (2019) [Google Scholar]
  107. B. Li, Y. Shen, L. Luo, W. Hu, Effects of processing variables and heat treatments on Al/Ti-6Al-4V interface microstructure of bimetal clad-plate fabricated via a novel route employing friction stir lap welding, Alloy Compd. 658, 904 (2016) [Google Scholar]
  108. D.M. Fronczek, J. Wojewoda-Budka, R. Chulist, et al., Structural properties of Ti/Al clads manufactured by explosive welding and annealing, Mater. Des. 91, 80 (2016) [Google Scholar]
  109. D.M. Fronczek, K. Saksl, R. Chulist, et al., Residual stresses distribution, correlated with bending tests, within explosively welded Ti gr. 2/A1050 bimetals, Mater. Charact. 144, 461 (2018) [Google Scholar]
  110. D.M. Fronczek, A. Wierzbicka-Miernik, K. Saksl, et al., The intermetallics growth at the interface of explosively welded A1050/Ti gr. 2/A1050 clads in relation to the explosive material, Arch. Civ. Mech. Eng. 18, 1679 (2018) [Google Scholar]
  111. D.M. Fronczek, R. Chulist, Z. Szulc, J. Wojewoda-Budka, Growth kinetics of TiAl3 phase in annealed Al/Ti/Al explosively welded clads, Mater. Lett. 198, 160 (2017) [Google Scholar]
  112. H. Paul, E. Maj, M. Prazmowski, A. Galka, M. Miszczyk, P. Petrzak, Microstructure and mechanical properties of multi-layered Al/Ti composites produced by explosive welding, Proc. Manuf. 15, 1391 (2018) [Google Scholar]
  113. D.V. Lazurenko, I.A. Bataev, V.I. Mali, et al., Explosively welded multilayer Ti-Al composites: Structure and transformation during heat treatment, Mater. Des. 102, 122 (2016) [Google Scholar]
  114. D. Boronski, M. Kotyk, P. Mackowiak, Fracture toughness of explosively welded Al/Ti layered material in cryogenic conditions, Proc. Struc. Integr. 2, 3764 (2016) [Google Scholar]
  115. Z.X. Fang, C.G. Shi, K. Feng, H.S. Shi, Z.R. Sun, Explosive welding technology of titanium/aluminum composite plate, J. PLA Univ. Sci. Technol. (Natural Science Edition), (2020) [Google Scholar]
  116. X.Z. Guo, M.Y. Fan, Z.L. Liu, F.Y. Ma, L.A. Wang, J. Tao, Explosive cladding and hot pressing of Ti/Al/Ti laminates, Rare Metal Mat. Eng. 46, 1192 (2017) [Google Scholar]
  117. X.Z. Guo, J. Tao, Z. Yuan, L.W. Zhang, X.J. Sun, lnterface and properties of explosive welded TA1/Al clad tube, Rare Met. Mater. Eng. 41, 139 (2012) [Google Scholar]
  118. Z.X. Fang, C.G. Shi, K. Feng, Y.H. Ge, J. You, Explosive welding experiment and property test of TA2-1060-TA2 cladding plate, Trans. China Weld. Inst. 40, 87 (2019) [Google Scholar]
  119. T.T. Zhang, W.X. Wang, Y. Wei, X.Q. Cao, Wavy interface and mechanical properties of explosive welded Ti/Al/Mg cladded plate, Trans. China Weld. Inst. 38, 33 (2017) [Google Scholar]
  120. J.Q. Wu, Study on microstructure and properties of magnesium/titanium dissimilar metal explosive welding interface, Taiyuan University of Technology, MA thesis, 2015 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.