Open Access
Issue |
Metall. Res. Technol.
Volume 120, Number 4, 2023
|
|
---|---|---|
Article Number | 412 | |
Number of page(s) | 15 | |
DOI | https://doi.org/10.1051/metal/2023043 | |
Published online | 12 July 2023 |
- D. Grevey, V. Vignal, I. Bendaoud et al., Microstructural and micro-electrochemical study of a tantalum-titanium weld interface, Mater. Des. 87, 974–985 (2015) [CrossRef] [Google Scholar]
- M.J. Torkamany, F. Malek Ghaini, R. Poursalehi, An insight to the mechanism of weld penetration in dissimilar pulsed laser welding of niobium and Ti-6Al-4V, Opt. Laser Technol. 79, 100–107 (2016) [CrossRef] [Google Scholar]
- I. Tomashchuk, M. Mostafa, T. Caudwell et al., Behavior of laser induced keyhole during dissimilar welding of metals, in: Lasers in Manufacturing Conference 2017, June 26–29, Munich, Germany. https://www.wlt.de/lim/Proceedings2017/Data/PDF/Contribution17_final.pdf [Google Scholar]
- Q. Nguyen, A. Azadkhou, M. Akbari et al., Experimental investigation of temperature field and fusion zone microstructure in dissimilar pulsed laser welding of austenitic stainless steel and copper, J. Manufactur. Process. 56, 206–215 (2020) [CrossRef] [Google Scholar]
- G. Phanikumar, P. Dutta, K. Chattopadhyay, Continuous welding of Cu-Ni dissimilar couple using CO2 laser, Sci. Technol. Welding Joining 10, 158–166 (2005) [CrossRef] [Google Scholar]
- I. Tomashchuk, J.-M. Jouvard, P. Sallamand et al., Modeling of the keyhole asymmetry in dissimilar laser welding, in: Comsol Conference Europe 14–16 October 2020, Virtual Edition. https://www.comsol.fr/paper/modeling-of-the-keyhole-asymmetry-in-dissimilar-laser-welding-94091 [Google Scholar]
- J.L. Zou, S.K. Wu, W.X. Yang et al., A novel method for observing the micro-morphology of keyhole wall during high-power fiber laser welding, Mater. Des. 80, 785–790 (2016) [CrossRef] [Google Scholar]
- A.F.H. Kaplan, R.S. Matti, Absorption peaks depending on topology of the keyhole front and wavelength, J. Laser Appl. 27, S29012 (2015) [CrossRef] [Google Scholar]
- H. Kim, K. Nam, S. Oh et al., Deep-learning-based real-time monitoring of full-penetration laser keyhole welding by using the synchronized coaxial observation method, J. Manufact. Process. 68, 1018–1030 (2021) [CrossRef] [Google Scholar]
- M. Miyagi, J. Wang, Keyhole dynamics and morphology visualized by in-situ X-ray imaging in laser melting of austenitic stainless steel, J. Mater. Process. Technol. 282, 116673 (2020) [CrossRef] [Google Scholar]
- M. Sokolov, P. Franciosa, R. Al Botros et al., Keyhole mapping to enable closed-loop weld penetration depth control for remote laser welding of aluminium components using optical coherence tomography, J. Laser Appl. 32, 032004 (2019) [Google Scholar]
- X. Jin, L. Li, Y. Zhang, A study on Fresnel absorption and reflections in the keyhole in deep penetration laser welding, J. Phys. D: Appl. Phys. 35, 2304–2310 (2002) [CrossRef] [Google Scholar]
- X. Jin, P. Berger, T. Graf, Multiple reflections and Fresnel absorption in an actual 3D keyhole during deep penetration laser welding, J. Phys. D: Appl. Phys. 39, 4703–4712 (2006) [Google Scholar]
- Y. Zhang, L. Li, G. Zhang, Spectroscopic measurements of plasma inside the keyhole in deep penetration laser welding, J. Phys. D: Appl. Phys. 38, 703–710 (2005) [CrossRef] [Google Scholar]
- M. Zhang, G. Chen, Y. Zhou et al., Direct observation of keyhole characteristics in deep penetration laser welding with a 10 kW fiber laser, Opt. Express 21, 19997–20004 (2013) [CrossRef] [Google Scholar]
- Y. Zhang, G. Chen, H. Wei et al., A novel “sandwich” method for observation of the keyhole in deep penetration laser welding, Opt. Lasers Eng. 46, 133–139 (2008) [Google Scholar]
- Y. Arata, H. Maruo, I. Miyamoto et al., Dynamic behavior of laser welding and cutting, in R.A. Bakish(Ed.), Proceedings 7th International Conference on Electron and Ion Beam Science and Technology, Washington, D. C. 1976, pp. 111–128 [Google Scholar]
- X. Jin, L. Zeng, Y. Cheng, Direct observation of keyhole plasma characteristics in deep penetration laser welding of aluminum alloy 6016, J. Phys. D: Appl. Phys. 45, 245205 (2012) [Google Scholar]
- M. Chen, Y. Wang, G. Yu et al., In situ optical observations of keyhole dynamics during laser drilling, Appl. Phys. Lett. 103, 194102 (2013) [CrossRef] [Google Scholar]
- S. Li, G. Chen, M. Zhang et al., Dynamic keyhole profile during high-power deep-penetration laser welding, J. Mater. Process. Technol. 214, 565–570 (2014) [CrossRef] [Google Scholar]
- M. Jiang, X. Chen, Y. Chen et al., Increasing keyhole stability of fiber laser welding under reduced ambient pressure, J. Mater. Process. Technol. 268, 213–222 (2019) [CrossRef] [Google Scholar]
- A. Artinov, N. Bakir, M. Bachmann et al., Weld pool shape observation in high power laser beam welding, Proc. CIRP 74, 683–686 (2018) [CrossRef] [Google Scholar]
- S. Matteï, J.-M. Jouvard, M. Mostafa et al., Comparison of keyhole characteristics obtained by two experimental methods: the “direct observation of drilled hole” method and the “sandwich” method, in: ICALEO 2012-31st International Congress on Applications of Lasers and Electro-Optics, 2012, pp. 59–64 [CrossRef] [Google Scholar]
- J. Schindelin, I. Arganda-Carreras, E. Frise et al., Fiji: an open-source platform for biological-image analysis, Nat. Methods 9, 676–682 (2012) [CrossRef] [Google Scholar]
- M. Schneider, L. Berthe, M. Muller et al., A fast method for morphological analysis of laser drilling holes, J. Laser Appl. 22, 127–131 (2010) [CrossRef] [Google Scholar]
- S. Guo, J. Zou, J. Xu et al., Multi-stage keyhole evolution in fiber laser welding: an experimental study and theoretical analysis, Res. Phys. 31, 104943 (2021) [Google Scholar]
- R. Fabbro, K. Chouf, Dynamical description of the keyhole in deep penetration laser welding, J. Laser Appl. 12, 142–148 (2000) [CrossRef] [Google Scholar]
- C.J. Knight, Theoretical modeling of rapid surface vaporization with back pressure, Am. Inst. Aeronaut. Astronaut. J. 17, 19–523 (1979) [Google Scholar]
- R. Indhu, V. Vivek, L. Sarathkumar et al., Overview of laser absorptivity measurement techniques for material processing, Lasers Manuf. Mater. Process. 5, 458–481 (2018) [CrossRef] [Google Scholar]
- G. Wiedemann, R. Franz, Über die Wärme-Leitungsfähigkeit der Metalle, Ann. Phys. Chem. 139, 497–531 ( 1853) [Google Scholar]
- A. Gouffé, Corrections d'ouverture des corps-noirs artificiels compte tenu des diffusions multiples internes, Rev. Opt. Théorique Instrum. 1-3, 1–64 (1945) [Google Scholar]
- G. Nordet, C. Gorny, Y. Mayi et al., Absorptivity measurements during laser powder bed fusion of pure copper with a 1 kW CW green laser, Opt. Laser Technol. 147, 107612 (2022) [CrossRef] [Google Scholar]
- F. Trouton, On molecular latent heat, Philos. Mag. 18, 54–57 ( 1884) [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.