Metall. Res. Technol.
Volume 116, Number 5, 2019
Inclusion cleanliness in the metallic alloys
Article Number 515
Number of page(s) 11
Published online 09 August 2019
  1. E.T. Turkdogan, R.J. Fruehan, Fundamentals of iron and steelmaking, in R.J. Fruehan (Ed.), The making, shaping and treating of steel: Steelmaking and refining volume, 11th ed., The AISE Steel Foundation, 1998, pp. 13–157 [Google Scholar]
  2. L. Zhang, B.G. Thomas, State of the art in evaluation and control of steel cleanliness, ISIJ Int. 4(3), 271–291 (2003) [CrossRef] [EDP Sciences] [Google Scholar]
  3. G.J.W. Kor, P.C. Glaws, Ladle refining and vacuum degassing, in: R.J. Fruehan (Ed.), The making, shaping and treating of steel: Steelmaking and refining volume, 11th ed., The AISE Steel Foundation, 1998, pp. 359–426 [Google Scholar]
  4. E.B. Pretorius, H.G. Oltmann, T. Cash, The effective modification of spinel inclusions by Ca treatment in LCAK steel, Iron Steel Technol. 7(7), 31–44 (2010) [Google Scholar]
  5. N. Verma, P.C. Pistorius, R.J. Fruehan, M.S. Potter, H.G. Oltmann, E.B. Pretorius, Calcium modification of spinel inclusions in aluminum-killed steel: Reaction steps, Metall. Mater. Trans. B 43(4), 830–840 (2012) [CrossRef] [Google Scholar]
  6. E.I. Castro-Cedeno, M. Herrera-Trejo, M. Castro-Roman, F. Castro-Uresti, M. Lopez-Cornejo, Evaluation of steel cleanliness in a steel deoxidized using Al, Metall. Mater. Trans. B 47(3), 1613–1625 (2016) [CrossRef] [Google Scholar]
  7. B.H. Reis, W.V. Bielefeldt, A.C. Faria-Vilela, Absorption of non-metallic inclusions by steelmaking slags – A review, J. Mater. Res. Technol. 3(2), 179–185 (2014) [CrossRef] [Google Scholar]
  8. T. Ototani, Calcium clean steel, Springer-Verlag, Berlin, 1986 [CrossRef] [Google Scholar]
  9. E.I. Castro-Cedeno, A. Jardy, A. Carre, S. Gerardin, J.-P. Bellot, Thermal modelling of the injection of standard and thermally insulated cored wire, Metall. Mater. Trans. B 48(6), 3316–3328 (2017) [CrossRef] [Google Scholar]
  10. D. Lu, Kinetics, Mechanisms and modeling of calcium treatment of steel, PhD thesis, McMaster University, Ontario, 1992 [Google Scholar]
  11. Y. Tabatabaei, K.-S. Coley, G.-A. Irons, S. Sun, A multilayer model for alumina inclusion transformation by calcium in the ladle furnace, Metall. Mater. Trans. B 49, 375–387 (2018) [CrossRef] [Google Scholar]
  12. Y. Tabatabaei, K.-S. Coley, G.-A. Irons, S. Sun, Model of inclusion evolution during calcium treatment in the ladle furnace, Metall. Mater. Trans. B 49, 2022–2037 (2018) [CrossRef] [Google Scholar]
  13. H.-g. Huang, M. Yan, J.-n. Sun, F.-s. Du, Heat transfer of calcium cored wires and CFD simulation on flow and mixing efficiency in the argon-stirred ladle, Ironmak. Steelmak. 45(7), 626–634 (2017) [CrossRef] [Google Scholar]
  14. S. Wang, J. Zhang, R. Cheng, H. Ma, Numerical simulation of inclusion modification during calcium treatment process in ladle, Trans. Indian Inst. Met. 71(9), 2231–2242 (2018) [CrossRef] [Google Scholar]
  15. V. De-Felice, I.L. Alves-Daoud, B. Dussoubs, A. Jardy, J.P. Bellot, Numerical modelling of inclusion behaviour in a gas-stirred ladle, ISIJ Int. 52(7), 1273–1280 (2012) [CrossRef] [Google Scholar]
  16. J.P. Bellot, V. De-Felice, B. Dussoubs, A. Jardy, S. Hans, Coupling of CFD and PBE calculations to simulate the behavior of an inclusion population in a gas-stirring ladle, Metall. Mater. Trans. B 45(1), 13–21 (2014) [CrossRef] [Google Scholar]
  17. P.V. Danckwerts, Significance of liquid-film coefficients in gas absorption, Ind. Eng. Chem. 43(6), 1460–1467 (1951) [Google Scholar]
  18. S. Taniguchi, S. Kawaguchi, A. Kikuchi, Fluid flow and gas-liquid mass transfer in gas-injected vessels, Appl. Math. Model. 26(2), 249–262 (2002) [Google Scholar]
  19. H. Kataoka, T. Miyauchi, Gas absorption into free liquid surface of water tunnel in turbulent region, Kagaku Kogaku 33(2), 181–186 (1969) [CrossRef] [Google Scholar]
  20. Ansys Fluent 17.0 Theory Guide, Ansys Inc., 2016, pp. 485–628 [Google Scholar]
  21. J. Lehmann, Applications of ArcelorMittal Maizières thermodynamic models to liquid steel elaboration, Rev. Métall.-Int. J. Metall. 105(11), 539–550 (2008) [CrossRef] [Google Scholar]
  22. M. Simonnet, J.F. Domgin, J. Lehmann, P. Gardin, Numerical tool coupling fluid dynamics and thermochemistry to predict and to optimize deoxidation processes, BHM Berg-u. Hüttenmänn. Monatsh. 152(11), 350–354 (2007) [CrossRef] [Google Scholar]
  23. W. Lu, M. Zhu, Numerical simulations of inclusion behavior in gas-stirred ladles, Metall. Mater. Trans. B 44(3), 762–782 (2013) [CrossRef] [Google Scholar]
  24. J.-P. Bellot, J.-S. Kroll-Rabotin, M. Gisselbrecht, M. Joishi, A. Saxena, S. Sanders, A. Jardy, Toward better control of inclusion cleanliness in a gas stirred ladle using multiscale numerical modelling, Materials 11, 1179 (2018) [CrossRef] [Google Scholar]
  25. L. Li, B. LI, Z. LIU, Modeling of gas-steel-slag three-phase flow in ladle metallurgy: Part II. Multi-scale mathematical model, ISIJ Int. 57(11), 1980–1989 (2017) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.