Issue
Metall. Res. Technol.
Volume 116, Number 5, 2019
Inclusion cleanliness in the metallic alloys
Article Number 508
Number of page(s) 10
DOI https://doi.org/10.1051/metal/2019011
Published online 12 August 2019
  1. J. Ohser, F. Mücklich, Statistical analysis of microstructures in materials science, John Wiley and Sons, New York, USA, 2000 [Google Scholar]
  2. J. Ohser, K. Schladitz, Image processing and analysis, Clarendon Press Oxford, Oxford, UK, 2006 [Google Scholar]
  3. W. Blaschke, Vorlesungen über integralgeometrie, VEB, Berlin, 1955 [Google Scholar]
  4. K.R. Mecke, Integral geometry in statistical physics, Int. J. Mod. Phys. B 12(9), 861–899 (1998) [NASA ADS] [CrossRef] [Google Scholar]
  5. L.A. Santalo, Integral geometry and geometric probability, Cambridge University Press, Cambridge, UK, 2004 [CrossRef] [Google Scholar]
  6. H. Minkowski, Volumen und oberfläche, Math. Ann. 57, 447–495 (2003) [CrossRef] [Google Scholar]
  7. K.R. Michielsen, H. De Raedt, Integral-geometry morphological image analysis, Phys. Rep. 347, 461–538 (2001) [CrossRef] [Google Scholar]
  8. V. Schulz, Description and reconstruction of microscopic random heterogenous media in order to estimate macroscopic hydraulic functions, PhD thesis, University of Heidelberg, 2003 [Google Scholar]
  9. W. Blaschke, Konvexe Bereiche gegebener konstanter Breite und kleinsten Inhalts, Math. Ann. 76, 504–513 (1915) [CrossRef] [Google Scholar]
  10. W. Blaschke, Eine frage über konvexe körper, Jahresbericht Deutsch, Math.-Verein. 25, 121–125 (1916) [Google Scholar]
  11. L.A. Santalo, Sobre los sistemas completos de desigualdades entre tres elementos de una figura plana, Math. Notae. 17, 82–104 (1961) [Google Scholar]
  12. S. Rivollier, Analyse d’image géométrique et morphométrique par diagrammes de forme et voisinages adaptatifs généraux, PhD thesis, École Nationale Supérieure des Mines de Saint-Étienne, France, 2010 [Google Scholar]
  13. S.N. Chiu, D. Stoyan, W. Kendall, J. Mecke, Stochastic geometry and its applications, John Wiley & Sons, Chichester, UK, 2013 [CrossRef] [Google Scholar]
  14. H. Hadwiger, Vorlesungen über inhalt, oberfläsche und isoperimetrie, Springer-Verlag, Berlin Heidelberg, Germany, 1957 [CrossRef] [Google Scholar]
  15. A. Rosenfeld, Connectivity in digital pictures, J. ACM 17(1), 146–160 (1970) [CrossRef] [Google Scholar]
  16. A. Rosenfeld, A converse to the jordan curve theorem for digital curves, Inf. Control 29, 292–293 (1975) [CrossRef] [Google Scholar]
  17. W. Nagel, J. Ohser, K. Pischang, An integral-geometric approach for the euler-poincaré characteristic of spatial images, J. Microsc. 198, 54–62 (2000) [CrossRef] [PubMed] [Google Scholar]
  18. C. Lang, J. Ohser, R. Hilfer, On the analysis of spatial binary images, J. Microsc. 203(3), 303–313 (2001) [CrossRef] [PubMed] [Google Scholar]
  19. J. Ohser, W. Nagel, K. Schladitz, The Euler number of discretised sets – On the choice of adjacency in homogeneous lattices, in: Morphology of condensed matter, Springer-Verlag, Berlin Heidelberg, Germany, 2002, pp. 275–798 [CrossRef] [Google Scholar]
  20. J. Ohser, W. Nagel, K. Schladitz, The euler number of discretised sets– Surprising results in three dimensions, Imag. Anal. Stereol. 22, 11–19 (2003) [CrossRef] [Google Scholar]
  21. K. Schladitz, J. Ohser, W. Nagel, Measuring intrinsic volumes in digital 3d images, Discret. Geom. Comp. Imag. 4245, 247–258 (2006) [CrossRef] [Google Scholar]
  22. K. Sandfort, J. Ohser, Labeling of n-dimensional images with choosable adjacency of the pixels, Imag. Anal. Stereol. 28, 45–61 (2009) [Google Scholar]
  23. M.W. Crofton, On the theory of local probability, applied to straight lines drawn at random in a plane, Philos. Trans. R. Soc. Lond. 158, 181–199 (1868) [CrossRef] [Google Scholar]
  24. L.R. Feret, La grosseur des grains des matières pulvérulentes, Premières Communications de la Nouvelle Association Internationale pour l’Essai des Matériaux, Groupe D, 1930, pp. 428–436 [Google Scholar]
  25. M.I. Shamos, Computational geometry, PhD thesis, Yale University, 1978 [Google Scholar]
  26. Y.D. Burago, V.A. Zalgaller, Geometric inequalities, Springer-Verlag, Berlin Heidelberg, Germany, 1988 [CrossRef] [Google Scholar]
  27. P.R. Scott, P.W. Awyong, Inequalities for convex sets, Inequal. Pure Appl. Math. 1(1–6), 1–6 (2000) [Google Scholar]
  28. M.A.H. Cifre, G. Salinas, S.S. Gomis, Complete systems of inequalities, Inequal. Pure Appl. Math. 2(1), 1–12 (2001) [Google Scholar]
  29. S. Rivollier, J. Debayle, J.C. Pinoli, Shape diagrams for 2D compact sets – Part I: analytic convex sets, Aust. J. Math. Anal. Appl. 7(2–3), 1–27 (2010) [Google Scholar]
  30. S. Rivollier, J. Debayle, J.C. Pinoli, Shape diagrams for 2D compact sets – Part II: analytic simply connected sets, Aust. J. Math. Anal. Appl. 7(2–4), 1–21 (2010) [Google Scholar]
  31. S. Rivollier, J. Debayle, J.C. Pinoli, Shape diagrams for 2D compact sets – Part III: convexity discrimination for analytic and discretized simply connected sets, Aust. J. Math. Anal. Appl. 7(2–5), 1–18 (2010) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.