Metall. Res. Technol.
Volume 116, Number 5, 2019
Inclusion cleanliness in the metallic alloys
Article Number 512
Number of page(s) 10
Published online 09 August 2019
  1. K. Higashitani, R. Ogawa, G. Hosokawa, Y. Matsuno, kinetic theory of shear coagulation for particles in a viscous fluid, J. Chem. Eng. Jpn. 15(14), 299–304 (1982) [CrossRef] [Google Scholar]
  2. C.G. Méndez, N. Nigro, A. Cardona, Drag and non-drag force influences in numerical simulations of metallurgical ladles, J. Mater. Process. Technol. 160(13), 296–305 (2005) [CrossRef] [Google Scholar]
  3. Y. Xie, S. Orsten, F. Oeters, Behaviour of bubbles at gas blowing into liquid wood’s metal, ISIJ Int. 32(11), 66–75 (1992) [CrossRef] [Google Scholar]
  4. M.V. Smoluchowski, Versuch einer mathematischen Theorie der Koagulationskinetik kolloider Lösungen, Zeitschrift für Physikalische Chemie 92U(11), 129–168 (1918) [Google Scholar]
  5. C. Coufort, D. Bouyer, A. Liné, B. Haut, Modelling of flocculation using a population balance equation, Chem. Eng. Process Process Intensification 46(112), 1264–1273 (2007) [CrossRef] [Google Scholar]
  6. I.L.A. Daoud, N. Rimbert, A. Jardy, B. Oesterlé, S. Hans, J.-P. Bellot, 3D modeling of the aggregation of oxide inclusions in a liquid steel ladle: two numerical approaches, Adv. Eng. Mater. 13(17), 543–549 (2011) [Google Scholar]
  7. V. De Felice, I.L.A. Daoud, B. Dussoubs, A. Jardy, J.-P. Bellot, Numerical modelling of inclusion behaviour in a gas-stirred ladle, ISIJ Int. 52(17), 1274–1281 (2012) [Google Scholar]
  8. J.-P. Bellot, J.-S. Kroll-Rabotin, M. Gisselbrecht, M. Joishi, A. Saxena, S. Sanders, toward better control of inclusion cleanliness in a gas stirred ladle using multiscale numerical modeling, Materials 11(17), 1179 (2018) [CrossRef] [Google Scholar]
  9. P.G. Saffman, J.S. Turner, On the collision of drops in turbulent clouds, J. Fluid Mech. 1(11), 16–30 (1956) [Google Scholar]
  10. M. Vanni, G. Baldi, Coagulation efficiency of colloidal particles in shear flow, Adv. Colloid Interface Sci. 97(1-3), 151–177 (2002) [CrossRef] [PubMed] [Google Scholar]
  11. G. Frungieri, M. Vanni, Shear-induced aggregation of colloidal particles: a comparison between two different approaches to the modelling of colloidal interactions, Can. J. Chem. Eng. 95(9), 1768–1780 (2017) [Google Scholar]
  12. G.R. Zeichner, W.R. Schowalter, Use of trajectory analysis to study stability of colloidal dispersions in flow fields, AIChE J. 23(3), 243–254 (1977) [Google Scholar]
  13. G.R. Zeichner, W.R. Schowalter, Effects of hydrodynamic and colloidal forces on the coagulation of dispersions, J. Colloid Interface Sci. 71(2), 237–253 (1979) [Google Scholar]
  14. A. Saxena, J.-S. Kroll-Rabotin, R.S. Sanders, A numerical approach to model aggregate restructuring in shear flow using DEM in Lattice-Boltzmann simulations, SINTEF Academic Press, Trondheim, Norway, 2017 [Google Scholar]
  15. J.G.M. Eggels, J.A. Somers, Numerical simulation of free convective flow using the lattice-Boltzmann scheme, Int. J. Heat Fluid Flow 16(15), 357–364 (1995) [Google Scholar]
  16. X.D. Niu, C. Shu, Y.T. Chew, Y. Peng, A momentum exchange-based immersed boundary-lattice Boltzmann method for simulating incompressible viscous flows, Phys. Lett. A 354(13), 173–182 (2006) [Google Scholar]
  17. E.-I. Castro-Cedeño, M. Herrera-Trejo, M. Castro-Román, Evaluation of steel cleanliness in a steel deoxidized using Al, Met. Mat. Trans. B 47(13), 1613–1625 (2016) [CrossRef] [Google Scholar]
  18. D.R. Mikulencak, J.F. Morris, Stationary shear flow around fixed and free bodies at finite Reynolds number, J. Fluid Mech. 56(12), 215–242 (2004) [Google Scholar]
  19. S. Lomholt, M.R. Maxey, Force-coupling method for particulate two-phase flow: stokes flow, J. Comput. Phys. 184(12), 381–405 (2003) [Google Scholar]
  20. M. Cournil, F. Gruy, P. Gardin, H. Saint-Raymond, Modelling of solid particle aggregation dynamics in non-wetting liquid medium, Chem. Eng. Process Process Intensification 46(112), 586–597 (2006) [CrossRef] [Google Scholar]
  21. K. Sasai, direct measurement of agglomeration force exerted between alumina particles in molten steel, ISIJ Int. 54(112), 2780–2789 (2014) [CrossRef] [Google Scholar]
  22. K. Sasai, Interaction between alumina inclusions in molten steel due to cavity bridge force, ISIJ Int. 56(16), 1013–1022 (2016) [CrossRef] [Google Scholar]
  23. M. Smoluchowski, Drei Vorträge über Diffusion, Brownsche Molekularbewegung und Koagulation von Kolloidteilchen, Zeitschrift für Physik 17, 557–585 (1916) [Google Scholar]
  24. J. Kumar, M. Peglow, G. Warnecke, S. Heinrich, L. Mörl, Improved accuracy and convergence of discretized population balance for aggregation: the cell average technique, Chem. Eng. Sci. 61, 3327–3342 (2006) [Google Scholar]
  25. S. Kumar, D. Ramkrishna, On the solution of population balance equations by discretization — I. A fixed pivot technique, Chem. Eng. Sci. 51(18), 1311–1332 (1996) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.