Open Access
Issue
Metall. Res. Technol.
Volume 116, Number 6, 2019
Article Number 634
Number of page(s) 12
DOI https://doi.org/10.1051/metal/2019060
Published online 26 November 2019
  1. G. Kartal, S. Timur, M. Urgen, A. Erdemir, Electrochemical boriding of titanium for improved mechanical properties, Surf. Coatings Technol. 204, 3935–3939 (2010). DOI: 10.1016/j.surfcoat.2010.05.021 [CrossRef] [Google Scholar]
  2. J. Li, C. Chen, T. Squartini, Q. He, A study on wear resistance and microcrack of the Ti3Al/TiAl + TiC ceramic layer deposited by laser cladding on Ti-6Al-4V alloy, Appl. Surf. Sci. 257, 1550–1555 (2010). DOI: 10.1016/j.apsusc.2010.08.094 [Google Scholar]
  3. H.M. Wang, Y.F. Liu, Microstructure and wear resistance of laser clad Ti5Si3/NiTi2 intermetallic composite coating on titanium alloy, Mater. Sci. Eng. A 338, 126–132 (2002). DOI: 10.1016/S0921-5093(02)00076-X [CrossRef] [Google Scholar]
  4. J.C. Ion, Laser processing of engineering materials: principles, procedure and industrial application, Boston, 2005, ISBN 9780750660792 [Google Scholar]
  5. S.H. Mok, G. Bi, J. Folkes, I. Pashby, Deposition of Ti − 6Al − 4V using a high power diode laser and wire, Part I: investigation on the process characteristics, 2015. DOI: 10.1016/j.surfcoat.2008.02.008 [Google Scholar]
  6. A.K. Sachdev, K. Kulkarni, Z.Z. Fang, R. Yang, V. Girshov, Titanium for automotive applications: challenges and opportunities in materials and processing, JOM 64, 553–565 (2012). DOI: 10.1007/s11837-012-0310-8 [CrossRef] [Google Scholar]
  7. C. Zhang, M. Fujii, Tribological behavior of thermally sprayed WC coatings under water lubrication, Mater. Sci. Appl. 7, 527–541 (2016). DOI: 10.4236/msa.2016.79045 [Google Scholar]
  8. R. Song, J. Li, J.Z. Shao, L.L. Bai, J.L. Chen, C.C. Qu, Microstructural evolution and wear behaviors of laser cladding Ti2Ni/α (Ti) dual-phase coating reinforced by TiB and TiC, Appl. Surf. Sci. 355, 298–309 (2015). DOI: 10.1016/j.apsusc.2015.07.131 [Google Scholar]
  9. B.R. Haldar, P.S. Agarwal, Laser cladding of in-situ TiB, TiC and TiN reinforced Ni-Ti MMC coating on Ti-6Al-4V for improving tribological performance. 4th Int. 25 All india Manuf. Technol. Des. Res. 2012, pp. 796–801 [Google Scholar]
  10. J.A. Varela, J.M. Amado, M.J. Tobar, M.P. Mateo, A. Yañez, G. Nicolas, Characterization of hard coatings produced by laser cladding using laser-induced breakdown spectroscopy technique, Appl. Surf. Sci. 336, 396–400 (2015). DOI: 10.1016/j.apsusc.2015.01.037 [Google Scholar]
  11. M.R. Amaya-Vazquez, J.M. Sánchez-Amaya, Z. Boukha, F.J. Botana, Microstructure, microhardness and corrosion resistance of remelted TiG2 and Ti6Al4V by a high power diode laser, Corros. Sci. 56, 36–48 (2012). DOI: 10.1016/j.corsci.2011.11.006 [Google Scholar]
  12. S. Al-Sayed Ali, A. Hussein, A. Nofal, S. Hasseb Elnaby, H. Elgazzar, H. Sabour, Laser powder cladding of Ti-6Al-4V α/β alloy, Materials (Basel) 10, 1178 (2017). DOI: 10.3390/ma10101178 [Google Scholar]
  13. Oerlikon Group − Balzers, Metco, Barmag, Neumag, Graziano, Fairfield «Oerlikon Corporate», available online: https://www.oerlikon.com/en/ ( accessed on Sep 14, 2017) [Google Scholar]
  14. W.M. Steen, J. Mazumder, Laser material processing, 4th ed., Springer, UK, 2010, ISBN 978-1-84996-061-8 [CrossRef] [Google Scholar]
  15. A.N. Samant, S.P. Harimkar, N.B. Dahotre, Laser beam operation mode dependent grain morphology of alumina, J. Appl. Phys. 102, 0–6 (2007). DOI: 10.1063/1.2825403 [Google Scholar]
  16. Metallographic Etching. Available online: http://www.metallographic.com/Technical/Etching.htm ( accessed on Jan 7, 2017) [Google Scholar]
  17. P.B. Kadolkar, T.R. Watkins, J.T.M. De Hosson, B.J. Kooi, N.B. Dahotre, State of residual stress in laser-deposited ceramic composite coatings on aluminum alloys, Acta Mater. 55, 1203–1214 (2007). DOI: 10.1016/j.actamat.2006.07.049 [Google Scholar]
  18. S. Zhou, X. Zeng, Q. Hu, Y. Huang, Analysis of crack behavior for Ni-based WC composite coatings by laser cladding and crack-free realization, Appl. Surf. Sci. 255, 1646–1653 (2008). DOI: 10.1016/j.apsusc.2008.04.003 [Google Scholar]
  19. C. Lee, H. Park, J. Yoo, C. Lee, W. Woo, S. Park, Residual stress and crack initiation in laser clad composite layer with Co-based alloy and WC+NiCr, Appl. Surf. Sci. 345, 286–294 (2015). DOI: 10.1016/j.apsusc.2015.03.168 [Google Scholar]
  20. R.L. Sun, Y.W. Lei, W. Niu, Laser clad TiC reinforced NiCrBSi composite coatings on Ti-6Al-4V alloy using a CW CO2 laser, Surf. Coatings Technol. 203, 1395–1399 (2009). DOI: 10.1016/j.surfcoat.2008.11.012 [CrossRef] [Google Scholar]
  21. P. Wu, C.Z. Zhou, X.N. Tang, Microstructural characterization and wear behavior of laser cladded nickel-based and tungsten carbide composite coatings, Surf. Coatings Technol. 166, 84–88 (2003). DOI: 10.1016/S0257-8972(02)00730-2 [CrossRef] [Google Scholar]
  22. G. Xu, M. Kutsuna, Z. Liu, L. Sun, Characteristic behaviours of clad layer by a multi-layer laser cladding with powder mixture of Stellite-6 and tungsten carbide, Surf. Coatings Technol. 201, 3385–3392 (2006). DOI: 10.1016/j.surfcoat.2006.07.210 [CrossRef] [Google Scholar]
  23. P.K. Farayibi, J. Folkes, A. Clare, O. Oyelola, Cladding of pre-blended Ti-6Al-4V and WC powder for wear resistant applications, Surf. Coatings Technol. 206, 372–377 (2011). DOI: 10.1016/j.surfcoat.2011.07.033 [CrossRef] [Google Scholar]
  24. J.L. Chen, J. Li, R. Song, L.L. Bai, J.Z. Shao, C.C. Qu, Effect of the scanning speed on microstructural evolution and wear behaviors of laser cladding NiCrBSi composite coatings, Opt. Laser Technol. 72, 86–99 (2015). DOI: 10.1016/j.optlastec.2015.03.015 [Google Scholar]
  25. A.I. Noskov, A.K. Gilmutdinov, R.M. Yanbaev, Effect of coaxial laser cladding parameters on bead formation, Int. J. Miner. Metall. Mater 24, 550–556 (2017). DOI: 10.1007/s12613-017-1436-z [CrossRef] [Google Scholar]
  26. M. Schneider, Laser cladding with powder − effect of some machining parameters on clad properties, 1998, p. 177 [Google Scholar]
  27. A. Ossowska, A. Zieliński, M. Buczek, Properties of surface layers of titanium alloy TI6AL4V after laser melting processes, Adv. Mater. Sci. 10, 63–68 (2011). DOI: 10.2478/v10077-010-0018-9 [Google Scholar]
  28. A.J. Gant, M.G. Gee, Structure–property relationships in liquid jet erosion of tungsten carbide hardmetals, Int. J. Refract. Met. Hard Mater. 27, 332–343 (2009). DOI: 10.1016/j.ijrmhm.2008.11.013 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.