Open Access
Issue
Metall. Res. Technol.
Volume 119, Number 1, 2022
Article Number 109
Number of page(s) 16
DOI https://doi.org/10.1051/metal/2021088
Published online 20 January 2022
  1. P. Riboud, R. Vasse, Désulfuration de l’acier en poche: synthèse des résultats théoriques et industriels, Revue de Métallurgie. 82, 801–810 (1985) [CrossRef] [EDP Sciences] [Google Scholar]
  2. S.-H. Kim, R.J. Fruehan, Physical modeling of liquid/liquid mass transfer in gas stirred ladles, Metall. Trans. B 18, 381–390 (1987) [CrossRef] [Google Scholar]
  3. J. Ishida, Effects of stirring by argon gas injection on metallurgical reactions in secondary steelmaking, Denki-Seiko (Electr. Furn. Steel) 52, 2–8 (1981) [CrossRef] [Google Scholar]
  4. J. Mietz, S. Schneider, F. Oeters, Model experiments on mass transfer in ladle metallurgy, Steel Res. 62, 1–9 (1991) [CrossRef] [Google Scholar]
  5. M. Hirasawa, K. Mori, M. Sano, A. Hatanaka, Y. Shimatani, Y. Okazaki, Rate of mass transfer between molten slag and metal under gas injection stirring, Trans. Iron Steel Inst. Jpn, 27, 277–282 (1987) [CrossRef] [Google Scholar]
  6. H. Lachmund, Y. Xie, T. Buhles, W. Pluschkell, Slag emulsification during liquid steel desulphurisation by gas injection into the ladle, Steel Res. Int. 74, 77–85 (2003) [CrossRef] [Google Scholar]
  7. D. Bothe, M. Koebe, K. Wielage, J. Prüss, H.-J. Warnecke, Direct numerical simulation of mass transfer between rising gas bubbles and water, in Bubbly Flows (Springer, 2004), pp. 159–174 [CrossRef] [Google Scholar]
  8. W. Lou, M. Zhu, Numerical simulation of desulfurization behavior in gas-stirred systems based on computation fluid dynamics-simultaneous reaction model (CFD-SRM) coupled model, Metall. Mater. Trans. B 45, 1706–1722 (2014) [CrossRef] [Google Scholar]
  9. W. Lou, M. Zhu, Numerical simulation of slag-metal reactions and desulfurization efficiency in gas-stirred ladles with different thermodynamics and kinetics, ISIJ Int. 55, 961–969 (2015) [CrossRef] [Google Scholar]
  10. R.V. Calabrese, T. Chang, P. Dang, Drop breakup in turbulent stirred-tank contactors. Part I: Effect of dispersed-phase viscosity, AIChE J. 32, 657–666 (1986) [CrossRef] [Google Scholar]
  11. R. Calabrese, C. Wang, N. Bryner, Drop breakup in turbulent stirred-tank contactors. Part III: Correlations for mean size and drop size distribution, AIChE J. 32, 677–681 (1986) [CrossRef] [Google Scholar]
  12. C. Wang, R.V. Calabrese, Drop breakup in turbulent stirred-tank contactors. Part II: Relative influence of viscosity and interfacial tension, AIChE J. 32, 667–676 (1986) [CrossRef] [Google Scholar]
  13. M. Iguchi, Y. Sumida, R. Okada, Z. Morita, Evaluation of critical gas flow rate for the entrapment of slag using a water model, ISIJ Int. 34, 164–170 (1994) [CrossRef] [Google Scholar]
  14. A. Monin, A.M. Yaglom, Statistical fluid mechanics (MIT Press, Cambridge, MA, 1971), vols. 1 and 2, p. 11 [Google Scholar]
  15. G.R. Hunt, T.S. van den Bremer, Classical plume theory: 1937-2010 and beyond, IMA J. Appl. Math. 76, 424–448 (2010) [Google Scholar]
  16. S. Popinet, Gerris: a tree-based adaptive solver for the incompressible Euler equations in complex geometries, J. Comput. Phys. 190, 572–600 (2003) [CrossRef] [MathSciNet] [Google Scholar]
  17. S. Popinet, An accurate adaptive solver for surface-tension-driven interfacial flows, J. Comput. Phys. 228, 5838–5866 (2009) [CrossRef] [MathSciNet] [Google Scholar]
  18. J.U. Brackbill, D.B. Kothe, C. Zemach, A continuum method for modeling surface tension, J. Comput. Phys. 100, 335–354 (1992) [Google Scholar]
  19. D.C. Kurt, A. Smith, F.J. Solis, A projection method for motion of triple junctions by level sets, Interfaces Free Boundaries (2002) [Google Scholar]
  20. X. Chen, Y. Sun, C. Xue, Y. Yu, G. Hu, Tunable structures of compound droplets formed by collision of immiscible microdroplets, Microfluid. Nanofluid. 21, 109 (2017) [CrossRef] [Google Scholar]
  21. J. López-Herrera, A. Gañán-Calvo, S. Popinet, M. Herrada, Electrokinetic effects in the breakup of electrified jets: a volume-of-fluid numerical study, Int. J. Multiphase Flow 71, 14–22 (2015) [CrossRef] [MathSciNet] [Google Scholar]
  22. S.B. Pope, Turbulent Flows (IOP Publishing, 2001) [Google Scholar]
  23. K. Yonezawa, K. Schwerdtfeger, Spout eyes formed by an emerging gas plume at the surface of a slag-covered metal melt, Metall. Mater. Trans. B 30, 411–418 (1999) [CrossRef] [Google Scholar]
  24. K. Krishnapisharody, G.A. Irons, Modeling of slag eye formation over a metal bath due to gas bubbling, Metall. Mater. Trans. B 37, 763–772 (2006) [CrossRef] [Google Scholar]
  25. M. Thunman, S. Eckert, O. Hennig, J. Björkvall, D. Sichen, Study on the formation of open-eye and slag entrainment in gas stirred ladle, Steel Res. Int. 78, 849–856 (2007) [CrossRef] [Google Scholar]
  26. D. Bonn, J. Eggers, J. Indekeu, J. Meunier, E. Rolley, Wetting and spreading, Rev. Mod. Phys. 81, 739 (2009) [CrossRef] [Google Scholar]
  27. N. Joubert, Liquid-liquid mass transfer characterization applied to metallurgical process, PhD dissertation, Sorbonne Université/Université Pierre et Marie Curie − Paris VI (2021). https://hal.archives-ouvertes.fr/tel-03227840 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.