Open Access
Issue |
Metall. Res. Technol.
Volume 119, Number 5, 2022
|
|
---|---|---|
Article Number | 517 | |
Number of page(s) | 12 | |
DOI | https://doi.org/10.1051/metal/2022071 | |
Published online | 12 September 2022 |
- M. Okonogi, K. Yamazaki, Development of medium carbon steel wire rods for cold heading by isothermal transformation treatment, Nip. Ste. Sum. Met. Tech. Rep.116, 65–70 (2017) [Google Scholar]
- M.S. López-Cornejo, H.J. Vergara-Hernández, S.A. Arreola-Villa et al., Numerical simulation of wire rod cooling of eutectoid steel under forced-convention, Metals 11. 224 , 1–13 (2021) [Google Scholar]
- I. Jain, S. Lenka, S.K. Ajmani et al., An approach to heat transfer analysis of wire loops over the stelmor conveyor to predict the microstructural and mechanical attributes of steel rods, J. Therm. Sci. Eng. Appl. 8 , 1–11 (2016) [CrossRef] [Google Scholar]
- E. Anelli, Application of mathematical modelling to hot rolling and controlled cooling of wire rods and bars, ISIJ Int. 32 , 440–449 (1992) [CrossRef] [Google Scholar]
- J.K. Hwang, The temperature distribution and underlying cooling mechanism of steel wire rod in the Stelmor type cooling process, Appl. Therm. Eng. 142 , 311–320 (2018) [CrossRef] [Google Scholar]
- P.C. Campbell, E.B. Hawbolt, J.K. Brimacombe, Microstructural engineering applied to the controlled cooling of steel wire rod: Part I. Experimental design and heat transfer, Metall. Mater. Trans. A 22A , 2769–2778 (1991) [CrossRef] [Google Scholar]
- P.C. Campbell, E.B. Hawbolt, J.K. Brimacombe, Microstructure engineering applied to the controlled cooling of steel wire rod: Part 2. Microstructural evolution and mechanical properties correlations, Metall. Mater. Trans. A 22A , 2779–2790 (1991) [CrossRef] [Google Scholar]
- P.C. Campbell, E.B. Hawbolt, J.K. Brimacombe, Microstructural engineering applied to the controlled cooling of steel wire rod: Part 3. Mathematical model-formulation and predictions, Metall. Mater. Trans. A 22A , 2791–2805 (1991) [CrossRef] [Google Scholar]
- R. Esterl, M. Sonnleitner, R. Schnitzer, Microstructural analysis of the recrystallization behaviorof low alloyed steels, Steel Res. Int. 90 , 1–10 (2019) [Google Scholar]
- R. Kuziak, S. Zajac, R. Kawalla et al., Cold heading quality low–carbon ultra–high strength bainitic steels. Final Report, RFCS Project No. RFSR-CT-2005-00031 (2008) [Google Scholar]
- K. Matsumoto, K. Tsukada, S. Yamamoto et al., Effect of Titanium on metallurgical and mechanical properties of controlled rolled steels, Tetsu-to-Hagane 74 , 107–114 (1988) [CrossRef] [Google Scholar]
- J. Opara, W. Zalecki, Dilatometric and metallographic studies for verifying phase transformations mesoscale model, J. Metall. Mater. 70 , 32–39 (2018) [Google Scholar]
- M. Irani, S. Chung, M. Kim et al., Adjustment of isothermal transformation diagrams using finite-element optimization of the Jominy test, Metals 10 , 931 (2020) [CrossRef] [Google Scholar]
- M. Pietrzyk, L. Madej, L. Rauch et al., Computational Materials Engineering: Achieving high accuracy and efficiency in metals processing simulations, Elsevier, Butterworth-Heinemann, Amsterdam, 2015 [Google Scholar]
- L. Rauch, D. Bachniak, R. Kuziak et al., Problem of identification of phase transformation models used in simulations of steels processing, J. Mater. Eng. Perform. 27 , 5725–5735 (2018) [CrossRef] [Google Scholar]
- M. Pietrzyk, J. Kusiak, R. Kuziak et al., Conventional and multiscale modelling of microstructure evolution during laminar cooling of DP steel strips, Metall. Mater. Trans. B 46B , 497–506 (2014) [Google Scholar]
- J. Szala, Metilo, authorized program, version 12.01a, Silesian University of Technology, Institute of Materials Science, Katowice. (2015) [Google Scholar]
- D. Bachniak, R. Kuziak, D. Szeliga et al., Mean field model of phase transformations in steels during cooling, which predicts evolution of carbon concentration in the austenite, Metall. Res. Technol. 118 , 411 (2021) [CrossRef] [EDP Sciences] [Google Scholar]
- M. Pietrzyk, R. Kuziak, Modelling phase transformations in steel, in J. Lin, D. Balint, M. Pietrzyk, Microstructure evolution in metal forming processes, Woodhead Publishing, Oxford, 2012, pp. 145–179 [CrossRef] [Google Scholar]
- B. Donnay, J.C. Herman, V. Leroy et al., Microstructure evolution of C-Mn Steels in the hot deformation process: the STRIPCAM model, in J.H. Beynon, P. Ingham, H. Teichert, K. Waterson, H. Pircher, Proc. 2nd Conf. Modelling of Metal Rolling Processes, London, 1996, pp. 23–35 [Google Scholar]
- D.P. Koistinen, R.E. Marburger, A general equation prescribing the extent of the austenite-martensite transformation in pure iron-carbon alloys and plain carbon steels, Acta Metall. 7 , 59–69 (1959) [CrossRef] [Google Scholar]
- J.O. Andersson, T. Helander, L. Höglund et al., Computational tools for materials science, Calphad 26 , 273–312 (2002) [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.