Open Access
Metall. Res. Technol.
Volume 119, Number 5, 2022
Article Number 520
Number of page(s) 15
Published online 12 September 2022
  1. S. Saillet, N. Rupa, C. Benhamou, Impact of large forging macrosegregations on the reactor pressure vessel surveillance program, Fontevraud 6 , 1–13 (2006) [Google Scholar]
  2. E.J. Pickering, H.K.D.H. Bhadeshia, The consequences of macroscopic segregation on the transformation behavior of a pressure-vessel steel, J. Pres. Vessel Technol. Trans. ASME, 136 , 1–7 (2014) [Google Scholar]
  3. F. Barcelo, B. Marini, S. Saillet, et al., Metallurgical characterization of micro-heterogeneities in a 16MND5 forging, Fontevraud 9 , 1–10 (2018). [Google Scholar]
  4. L. Zhang, B. Radiguet, P. Todeschini, et al., Investigation of solute segregation behavior using a correlative EBSD/TKD/APT methodology in a 16MND5 weld, J. Nucl. Mater. 523 , 434–443 (2019) [CrossRef] [Google Scholar]
  5. J. M. Capus, Temper embrittlement in steel, ASTM STP, 407 , 3–19 (1968). [Google Scholar]
  6. S. Raoul, B. Marini, A. Pineau, Effect of microstructure on the susceptibility of a 533 steel to temper embrittlement, J. Nucl. Mater. 257 , 199–205 (1998) [CrossRef] [Google Scholar]
  7. B. Marini, X. Averty, P. Wident, et al., Effect of the bainitic and martensitic microstructures on the hardening and embrittlement under neutron irradiation of a reactor pressure vessel steel, J. Nucl. Mater. 465 , 20–27 (2015) [CrossRef] [Google Scholar]
  8. M. Vacek, Effect of various metallurgical microstructures on the response of the nickel-molybdenum-chromium BH 70 steel to neutron irradiation at 285 °C, ASTM STP 909 , 260–278 (1986) [Google Scholar]
  9. H. Hu, G. Xu, M. Zhou et al., Effect of mo content on microstructure and property of low-carbon bainitic steels, Metals 6 (2016) [Google Scholar]
  10. J. Kong, C. Xie, Effect of molybdenum on continuous cooling bainite transformation of low-carbon microalloyed steel, Mater. Des. 27 , 1169–1173 (2006) [CrossRef] [Google Scholar]
  11. C. Zhang et al., Effect of Mn content on microstructure and properties of wear-resistant bainitic steel, Mater. Res. Exp. 6 (2019) [Google Scholar]
  12. J.M. Reichert, M. Militzer, Quantifying the effect of Nb and Mo on transformation products using advanced EBSD analysis, HSLA Steels 2015, Microalloying 2015 & Offshore Engineering, 2015, pp. 1–8 [Google Scholar]
  13. M.J. Roberts, Effect of transformation substructure on the strength and toughness of Fe-Mn alloys, Metall. Trans. 1 , 3287–3294 (1970) [CrossRef] [Google Scholar]
  14. D.-H. Huang, G. Thomas, Structure and mechanical properties of tempered martensite and lower Bainite in Fe-Ni-Mn-C steels, Metall. Trans. 2 , 1587–1598 (1971) [CrossRef] [Google Scholar]
  15. S. Khare, K. Lee, H.K.D.H. Bhadeshia, Relative effects of Mo and B on ferrite and bainite kinetics in strong steels, Int. J. Mater. Res. 11 , 1513–1520 (2009) [Google Scholar]
  16. F.B. Pickering, Physical metallurgy and the design of steels. Applied Science Publishers Ltd., 1978 [Google Scholar]
  17. R.A. Grange, Estimating the hardenability of carbon steels, Metall. Trans. 4 , 2231–2244 (1973) [CrossRef] [Google Scholar]
  18. T. Maki, K. Tsuzaki, I. Tamura, The morphology of microstructure composed of lath martensites in steels, Trans. ISIJ 20 , 207–214 (1980) [CrossRef] [Google Scholar]
  19. A.F. Gourgues, H.M. Flower, T.C. Lindley, Electron backscattering diffraction study of acicular ferrite, bainite, and martensite steel microstructures, Mater. Sci. Technol. 16 , 26–40 (2000). [CrossRef] [Google Scholar]
  20. N. Takayama, G. Miyamoto, T. Furuhara, Effects of transformation temperature on variant pairing of bainitic ferrite in low carbon steel, Acta Mater. 60 , 2387–2396 (2012). [CrossRef] [Google Scholar]
  21. G. Liang et al., Effect of cooling rate on microstructure and mechanical properties of a low-carbon low-alloy steel, J. Mater. Sci. 56 , 3995–4005 (2021) [CrossRef] [Google Scholar]
  22. T. Kaneshita, G. Miyamoto, T. Furuhara, Variant selection in grain boundary nucleation of bainite in Fe-2Mn-C alloys, Acta Mater. 127 , 368–378 (2017) [CrossRef] [Google Scholar]
  23. B. Su, H.P. Lin, J.C. Kuo, et al. EBSD investigation on microstructure transformation in low carbon steel during continuous cooling, Can. Metall. Q. 53 , 352–361 (2014) [CrossRef] [Google Scholar]
  24. M. Graf, M. Kuntz, H. Autenrieth et al., Investigation of size effects due to different cooling rates of as-quenched martensite microstructures in a low-alloy steel, Appl. Sci. 10 , 1–15 (2020) [Google Scholar]
  25. C. Cayron, B. Artaud, L. Briottet, Reconstruction of parent grains from EBSD data, Mater. Character. 57 , 386–401 (2006) [CrossRef] [Google Scholar]
  26. J.K. Mackenzie, The distribution of rotation axes in a random aggregate of cubic crystals, Acta Metall. 12 , 223–225 (1964) [CrossRef] [Google Scholar]
  27. G. Kurdjumov, G. Sachs, Über den Mechanismus der Stahlhärtung, Zeitschrift für Physik. 64 , 325–343 (1930) [CrossRef] [Google Scholar]
  28. Z. Nishiyama, X-ray investigation of the mechanism of the transformation from face centered cubic lattice to body centered cubic, Sci. Rep. Tohoku Univ. 23 , 637 (1934) [Google Scholar]
  29. A.B. Greninger, A.Z. Troiano, The mechanism of martensite formation, Metals Trans. 185 , 590–598 (1949) [Google Scholar]
  30. Y. Ohmori, H. Ohtsubo, Y.C. Jung et al., Morphology of Bainite and Widmanstätten Ferrite, Metall. Mater. Trans. A 25A , 1981–1989 (1994) [CrossRef] [Google Scholar]
  31. D. Phelan, N. Stanford, R. Dippenaar, In situ observations of Widmanstätten ferrite formation in a low-carbon steel, Mater. Sci. Eng. A 407 , 127–134 (2005) [CrossRef] [Google Scholar]
  32. K.J. Irvine, F.B. Pickering, The tempering characteristics of low-carbon low-alloy steels, J. Iron Steel Inst. 194 , 137–153 (1960) [Google Scholar]
  33. J.-B. Delattre, Private communication [Google Scholar]
  34. J. K. Mackenzie, Second paper on statistics associated with the random disorientation of cubes, Biometrika, 44, 229–240 (1957) [Google Scholar]
  35. J.D. Watson, P.G. Mcdougallt, The crystallography of Widmanstätten ferrite, Acta Metall. 21 , 961–973 (1973) [CrossRef] [Google Scholar]
  36. S. Morito, H. Tanaka, R. Konishi et al., The morphology and crystallography of lath martensite in Fe-C alloys, Acta Mater. 51 , 1789–1799 (2003) [CrossRef] [Google Scholar]
  37. E. Bouyne, H.M. Flower, T.C. Lindley et al. Use of EBSD technique to examine microstructure and cracking in a bainitic steel, Scr. Mater. 39 , 295–300 (1998) [CrossRef] [Google Scholar]
  38. T. Zhou, H. Yu, S. Wang, Effect of microstructural types on toughness and microstructural optimization of ultra-heavy steel plate: EBSD analysis and microscopic fracture mechanism, Mater. Sci. Eng. A 658 , 150–158 (2016) [CrossRef] [Google Scholar]
  39. A.F. Gourgues, H.M. Flower, T.C. Lindley, Electron backscattering diffraction study of acicular ferrite, bainite, and martensite steel microstructures, Mater. Sci. Technol. 16 , 26–40 (2000) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.