Open Access
Issue
Metall. Res. Technol.
Volume 120, Number 1, 2023
Article Number 117
Number of page(s) 16
DOI https://doi.org/10.1051/metal/2022094
Published online 22 February 2023
  1. E. Soujanya, B.N. Sarada, Effects of age hardening on the mechanical properties of high silicon stainless steel, Mater. Today Proc. 46, 4362–4367 (2021) [CrossRef] [Google Scholar]
  2. L. Bao, J. Chen, Q. Li et al., Research on a new localized induction heating process for hot stamping steel blanks, Materials 12, 1024 (2019) [CrossRef] [PubMed] [Google Scholar]
  3. D. Ghiglione, C. Leroux, C. Tournier, Cémentation. Carbonitruration. Techniques de l’ingénieur M1226, pp. 1–45 (1994) [Google Scholar]
  4. Y. Liu, M. Wang, J. Shi et al., Fatigue properties of two case hardening steels after carburization, Int. J. Fatigue 31, 292–299 (2009) [CrossRef] [Google Scholar]
  5. H.J. Lee, H. Kil, S.H. Kim et al., Corrosion and carburization behavior of chromia-forming heat resistant alloys in a high-temperature supercritical-carbon dioxide environment, Corros. Sci. 99, 227–239 (2015) [CrossRef] [Google Scholar]
  6. Y.-H. Yang, M. Wang, J.-C. Chen et al., Microstructure and mechanical properties of gear steels after high temperature carburization, J. Iron Steel Res. Int. 20, 140–145 (2013) [CrossRef] [Google Scholar]
  7. H.J. Kang, J.S. Yoo, J.T. Park et al., Effect of nano-carbide formation on hydrogen-delayed fracture for quenching and tempering steels during high-frequency induction heat treatment, Mater. Sci. Eng. A 543, 6–11 (2012) [CrossRef] [Google Scholar]
  8. S. Kikuchi, A. Sasago, J. Komotori, Effect of simultaneous surface modification process on wear resistance of martensitic stainless steel, J. Mater. Process. Technol. 209, 6156–6160 (2009) [CrossRef] [Google Scholar]
  9. H. Luo, X. Wang, Z. Liu et al., Influence of refined hierarchical martensitic microstructures on yield strength and impact toughness of ultra-high strength stainless steel, J. Mater. Sci. Technol. 51, 130–136 (2020) [CrossRef] [Google Scholar]
  10. C. Wang, K. Luo, J. Wang et al., Carbide-facilitated nanocrystallization of martensitic laths and carbide deformation in AISI 420 stainless steel during laser shock peening, Int. J. Plast. 150, 103191 (2022) [CrossRef] [Google Scholar]
  11. T.Y. Zeng, W. Li, N.M. Wang et al., Microstructural evolution during tempering and intrinsic strengthening mechanisms in a low carbon martensitic stainless bearing steel, Mater. Sci. Eng. A 836, 142736 (2022) [CrossRef] [Google Scholar]
  12. K.H. Lo, C.H. Shek, J.K.L. Lai, Recent developments in stainless steels, Mater. Sci. Eng. R 65, 39–104 (2009) [CrossRef] [Google Scholar]
  13. G. Kalwa, E. Schnabel, P. Schwaab, Grain structure of bainitic and martensitic steels, Steel Res. 57, 207–215 (1986) [CrossRef] [Google Scholar]
  14. R. Badji, B. Bacroix, M. Bouabdallah, Texture, microstructure and anisotropic properties in annealed 2205 duplex stainless steel welds, Mater. Charact. 62, 833–843 (2011) [CrossRef] [Google Scholar]
  15. G. Miyamoto, N. Iwata, T. Takayama et al., Quantitative analysis of variant selection in ausformed lath martensite, Acta Mater. 60, 1139–1148 (2012) [CrossRef] [Google Scholar]
  16. S. Morito, H. Tanaka, R. Konichi et al., The morphology and crystallography of lath martensite in Fe-C alloys, Acta Mater. 51, 1789–1799 (2003) [CrossRef] [Google Scholar]
  17. S. Morito, H. Yoshida, T. Maki et al., Effect of block size on the strength of lath martensite in low carbon steels, Mater. Sci. Eng. A 438–440, 237–240 (2006) [CrossRef] [Google Scholar]
  18. O. Haiko, V. Javaheri, K. Valtonen et al., Effect of prior austenite grain size on the abrasive wear resistance of ultra-high strength martensitic steels, Wear 203336 (2020) [CrossRef] [Google Scholar]
  19. L. Qi, A.G. Khachaturyan, J.W. Morris Jr, The microstructure of dislocated martensitic steel: theory, Acta Mater. 76, 23–39 (2014) [CrossRef] [Google Scholar]
  20. C. Cabus, H. Réglé, B. Bacroix, Orientation relationship between austenite and bainite in a multiphased steel, Mater. Character. 58, 332–338 (2007) [CrossRef] [Google Scholar]
  21. R.K. Ray, M.P. Butron-Guillén, J.J. Jonas, Transformation textures in a controlled rolled Nb-V steel, Texture Microstruct. 14–18, 483–491 (1991) [CrossRef] [Google Scholar]
  22. K. Zhu, O. Bouaziz, C. Oberbillig et al., An approach to define the effective lath size controlling yield strength of bainite, Mater. Sci. Eng. A 527, 6614–6619 (2010) [CrossRef] [Google Scholar]
  23. Z. Guo, C.S. Lee, J.W. Morris Jr, On coherent transformations in steel, Acta Mater. 52, 5511–5518 (2004) [CrossRef] [Google Scholar]
  24. S. Morito, H. Tanaka, R. Konishi et al., The morphology and crystallography of lath martensite in alloy steels, Acta Mater. 54, 5323–5331 (2006) [CrossRef] [Google Scholar]
  25. J.W.J. Morris Jr, C. Kinney, K. Pytlewski et al., Microstructure and cleavage in lath martensitic steels, Sci. Technol. Adv. Mater. 14, 014208 (2013) [CrossRef] [PubMed] [Google Scholar]
  26. K. Zhu, D. Barbier, T. Iung, Characterization and quantification methods of complex BCC matrix microstructures in advanced high strength steels, J. Mater. Sci. 48, 413–423 (2013) [CrossRef] [Google Scholar]
  27. B. Hutchinson, J. Hagström, O. Karlsson et al., Microstructures and hardness of as-quenched martensites (0.1–0. 5%C), Acta Mater. 59, 5845–5858 (2011) [CrossRef] [Google Scholar]
  28. N. Takayama, G. Miyamoto, T. Furuhara, Effects of transformation temperature on variant pairing of bainitic ferrite in low carbon steel, Acta Mater. 60, 2387–2396 (2012) [CrossRef] [Google Scholar]
  29. A. Martinavicius et al., Caractérisations microstructurales des aciers MEKINOX par sonde atomique et MEB, I. Report, Editor 2013, Normandie Univ., UNIROUEN, INSA Rouen, CNRS, Groupe de Physique des Matériaux, Rouen 76000, France [Google Scholar]
  30. A. Bénéteau, Étude in situ des évolutions microstructurales d’un acier inoxydable martensitique à l’azote au cours d’une succession de traitements thermiques, Institut National Polytechnique de Lorraine, 2007 [Google Scholar]
  31. T. Santos, Contribution à la compréhension des liens entre microstructure et propriétés tribologiques d’aciers inoxydables haute dureté après traitements de surface, University Paris13, 2015 [Google Scholar]
  32. G. Ebrahimi, A. Momeni, M. Jahazi et al., Dynamic recrystallization and precipitation in 13Cr super-martensitic stainless steels, Metall. Trans. A 45, 2219–2231 (2014) [CrossRef] [Google Scholar]
  33. N. Fujita, K. Ohmura, A. Yamamoto, Changes of microstructures and high temperature properties during high temperature service of Niobium added ferritic stainless steels, Mater. Sci. Eng. A 351, 272–281 (2003) [CrossRef] [Google Scholar]
  34. D. Pye, Practical Nitriding and Ferritic Nitrocarburizing, ASM International, Materials Park, OH, 2003, p. 159 [Google Scholar]
  35. V.I. Belyakova, M.F. Alekseenko, Structure and properties of carburized martensite stainless steels, Metal Sci. Heat Treat. 11, 32–34 (1969) [CrossRef] [Google Scholar]
  36. E.C. Bain, The nature of martensite, Trans. AIME Steel Divis. 70, 25–46 (1924) [Google Scholar]
  37. G. Kurdjumov, G. Sachs, Über den Mechanismus der Stahlhärtung, Zeitsch. Phys. 64, 325–343 (1930) [CrossRef] [Google Scholar]
  38. G. Wasserman, Uber den Mechanismus der α-γ-Umwandlung des Eisens, Arch. Eisenhüttenwes 16, 647 (1933) [Google Scholar]
  39. Z. Nishiyama, X-ray investigation o the mechanism of the transformation from face-centred cubic lattice to body-centered cubic, in Scientifc Report Tohoku Imperial University, 1935 p. 637 [Google Scholar]
  40. A.B. Greninger, A.R. Troiano, The mechanism of martensite formation, Metals Trans. 185, 5–15 (1949) [Google Scholar]
  41. C. Cabus, H. Réglé, B. Bacroix, The influence of grain morphology on texture measured after phase transformation in multiphase steels, J. Mater. Sci. 49, 5646–5657 (2014) [CrossRef] [Google Scholar]
  42. H. Inagaki, in Proc. 6th inst. Conf. on Textures of Materials (1981) p. 149 [Google Scholar]
  43. M. Ueda, H. Yasuda, Y. Umakoshi, Effect of grain boundary on martensite transformation behaviour in Fe-32 at.%Ni bicrystals, Sci. Technol. Adv. Mater. 3, 171–179 (2002) [CrossRef] [Google Scholar]
  44. P. Bate, B. Hutchinson, The effect of elastic interactions between displacive transformations on textures in steels, Acta Mater. 48, 3183–3192 (2000) [CrossRef] [Google Scholar]
  45. A. Lambert-Perlade, A.F. Gourgues, A. Pineau, Austenite to bainite phase transformation in the heat-affected zone of a high strength low alloy steel, Acta Mater. 52, 2337–2348 (2004) [CrossRef] [Google Scholar]
  46. B. Bacroix, S. Queyreau, D. Chaubet et al., The influence of the cube component on the mechanical behaviour of copper polycrystalline samples in tension, Acta Mater. 160, 121–136 (2018) [CrossRef] [Google Scholar]
  47. B. Sonderegger, S. Mitsche, H. Cerjak, Martensite laths in creep resistant martensitic 9-12% Cr steels — calculation and measurement of misorientations, Mater. Character. 58, 874–882 (2007) [CrossRef] [Google Scholar]
  48. P.P. Suikkanen, C. Cayron, A.J. DeArdo et al., Crystallographic analysis of isothermally transformed bainite in 0.2C-2.0Mn-1.5Si-0.6Cr steel using EBSD, J. Mater. Sci. Technol. 29, 359–366 (2013) [CrossRef] [Google Scholar]
  49. A. Stormvinter, G. Miyamoto, T. Furuhara et al., Effect of carbon content on variant pairing of martensite in Fe―C alloys, Acta Mater. 60, 7265–7274 (2012) [CrossRef] [Google Scholar]
  50. S. Morito, A.H. Pham, T. Hayashi et al., Block boundary analyses to identify martensite and bainite, Mater. Today Proc. 2, S913–S916 (2018) [Google Scholar]
  51. C.C. Kinney, K.R. Pytlewski, A.G. Khachaturyan et al., The microstructure of lath martensite in quenched 9Ni steel, Acta Mater. 69, 372–385 (2014) [CrossRef] [Google Scholar]
  52. V. Pancholi, M. Krishnan, I. Samajdar et al., Self-accommodation in the bainitic microstructure of ultra-high-strength steel, Acta Mater. 56, 2037–2050 (2008) [CrossRef] [Google Scholar]
  53. F. Maresca, W.A. Curtin, The austenite/lath martensite interface in steels: structure, athermal motion, and in-situ transformation strain revealed by simulation and theory, Acta Mater. 134, 302–323 (2017) [CrossRef] [Google Scholar]
  54. E.J. Pavlina, C. Vantyne, Correlation of yield strength and tensile strength with hardness for steels, J. Mater. Eng. Perform. 17, 888–893 (2008) [CrossRef] [Google Scholar]
  55. C.E.I.C. Ohlund, D. den Ouden, J. Weidow et al., Modelling the evolution of multiple hardening mechanisms during tempering of Fe-C-Mn-Ti martensite, Isij Int. 55, 884–893 (2015) [CrossRef] [Google Scholar]
  56. C. Sun, P. Fu, H. Liu et al., The effect of lath martensite microstructures on the strength of medium-carbon low-alloy steel, Crystals 10, 232 (2020) [Google Scholar]
  57. J. Hidalgo, M.J. Santofimia, Effect of prior austenite grain size refinement by thermal cycling on the microstructural features of As-quenched lath martensite, Metall. Mater. Trans. A 47, 5288–5301 (2016) [CrossRef] [Google Scholar]
  58. N. Hansen, X. Huang, Microstructure and flow stress of polycrystals and single crystals, Acta Mater. 46, 1827–1836 (1998) [CrossRef] [Google Scholar]
  59. S. Morito, J. Nishikawa, T. Maki, Dislocation density within lath martensite in Fe-C and Fe-Ni alloys, Isij Int. 43, 1475–1477 (2003) [CrossRef] [Google Scholar]
  60. J. Jiang, T.B. Britton, A.J. Wilkinson, Evolution of dislocation density distributions in copper during tensile deformation, Acta Mater. 61, 7227–7239 (2013) [CrossRef] [Google Scholar]
  61. P.J. Konijnenberg, S. Zaefferer, D. Raabe, Assessment of geometrically necessary dislocation levels derived by 3D EBSD, Acta Mater. 99, 402–414 (2015) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.