Open Access
Issue
Metall. Res. Technol.
Volume 120, Number 2, 2023
Article Number 216
Number of page(s) 13
DOI https://doi.org/10.1051/metal/2023033
Published online 18 April 2023
  1. J.L. Zhang, Z.J. Liu, K.X. Jiao et al., Progress of new technologies and fundamental theory about ironmaking, Chin. J. Eng. 43, 1630–1646 (2021) [Google Scholar]
  2. Z.J. Liu, J.L. Zhang, T.J. Yang, Low carbon operation of super-large blast furnace in China, ISIJ Int. 55, 1146–1156 (2015) [CrossRef] [Google Scholar]
  3. K.K. Cui, J. Wang, H. Wang et al., Erosion behavior and longevity technologies of refractory linings in blast furnaces for ironmaking: a review, Steel Res. Int. 93, 2200266 (2022) [CrossRef] [Google Scholar]
  4. K.X. Jiao, J.L. Zhang, Q.F. Hou et al., Analysis of the relationship between productivity and hearth wall temperature of a commercial blast furnace and model prediction, Steel Res. Int. 88, 1600475 (2017) [CrossRef] [Google Scholar]
  5. K. Surendra, Heat transfer analysis and estimation of refractory wear in an iron blast furnace hearth using finite element method, ISIJ Int. 45, 1122–1128 (2005) [CrossRef] [Google Scholar]
  6. Â. Cristante, L.A. Nascimento, E.S. Neves et al., Study of the castable selection for blast furnace blowpipe, Ceram. Int. 47, 19443–19454 (2021) [CrossRef] [Google Scholar]
  7. Y. Deng, J.L. Zhang, K.X. Jiao, Residual thickness of carbon brick calculation model and systematic analysis of heat transfer, Metall. Res. Technol. 114, 210 (2017) [CrossRef] [EDP Sciences] [Google Scholar]
  8. J. Stec, R. Smulski, S. Nagy et al., Permeability of carbon refractory materials used in a blast furnace hearth, Ceram. Int. 47, 16538–16546 (2021) [CrossRef] [Google Scholar]
  9. R.Z. Xu, J.L. Zhang, G.H. Zhang et al., Corrosion behavior of carbon composite brick in high alumina slags, Ceram. Int. 44, 5242–5249 (2018) [CrossRef] [Google Scholar]
  10. H.B. Zuo, C. Wang, J.L. Zhang et al., Comparison of oxidation behaviors of novel carbon composite brick with traditional carbon brick, Ceram. Int. 41, 7929–7936 (2015) [CrossRef] [Google Scholar]
  11. Y. Deng, R. Liu, K.X. Jiao et al., Evolution and mechanism of dissolutive wetting between hot metal and carbon brick, J. Eur. Ceram. Soc. 42, 4420–4428 (2022) [CrossRef] [Google Scholar]
  12. M. Kubiś, K. Pietrak, Ł. Cieślikiewicz et al., On the anisotropy of thermal conductivity in ceramic bricks, J. Build. Eng. 31, 101418 (2020) [CrossRef] [Google Scholar]
  13. T. Shimizu, K. Matsuura, H. Furue et al., Thermal conductivity of high porosity alumina refractory bricks made by a slurry gelation and foaming method, J. Eur. Ceram. Soc. 33, 3429–3435 (2013) [CrossRef] [Google Scholar]
  14. J. Fruhstorfer, L. Schöttler, S. Dudczig et al., Erosion and corrosion of alumina refractory by ingot casting steels, J. Eur. Ceram. Soc. 36, 1299–1306 (2016) [CrossRef] [Google Scholar]
  15. K.X. Jiao, X.Y. Fan, J.L. Zhang et al., Erosion behavior of alumina-carbon composite brick in typical blast furnace slag and iron, Ceram. Int. 44, 19981–19988 (2018) [CrossRef] [Google Scholar]
  16. J.H. Ma, H.Z. Zhao, J. Yu et al., The critical role of aggregate microstructure in thermal shock resistance and slag resistance of Al2O3-SiC-C castable, Ceram. Int. 48, 11644–11653 (2022) [CrossRef] [Google Scholar]
  17. L. Liu, W. Zhou, H. Zhang, Test principle and measuring procedure for thermal physical properties of materials by laser flash method, WISCO Technol. 51, 9–12 (2013) [CrossRef] [Google Scholar]
  18. W.N.D. Santos, P. Mummery, A. Wallwork, Thermal diffusivity of polymers by the laser flash technique, Polym. Test. 24, 628–634 (2005) [CrossRef] [Google Scholar]
  19. W.J. Parker, R.J. Jenkins, C.P. Butler et al., Flash method of determining thermal diffusivity, heat capacity, and thermal conductivity, J. Appl. Phys. 32, 1679–1684 (1961) [CrossRef] [Google Scholar]
  20. X.Y. Fan, K.X. Jiao, J.L. Zhang et al., Study on physicochemical properties of Al2O3-SiC-C castable for blast furnace, Ceram. Int. 45, 13903–13911 (2019) [CrossRef] [Google Scholar]
  21. C. Wang, J.L. Zhang, W. Chen et al., Comparative analysis on the corrosion resistance to molten iron of four kinds of carbon bricks used in blast furnace hearth, Metals 12, 871 (2022) [CrossRef] [Google Scholar]
  22. Z. Pavlík, L. Fiala, R. Černý, Experimental assessment of thermal conductivity of a brick block with internal cavities using a semi-scale experiment, Int. J. Thermophys. 34, 909–915 (2013) [CrossRef] [Google Scholar]
  23. A. Cabeza-Prieto, M.S. Camino-Olea, M.P. Sáez-Pérez et al., Comparative analysis of the thermal conductivity of handmade and mechanical bricks used in the cultural heritage, Materials 15, 4001 (2022) [CrossRef] [PubMed] [Google Scholar]
  24. N. Papanikolaou, Lattice thermal conductivity of SiC nanowires, J. Phys.: Condens. Matter 20, 135201 (2008) [CrossRef] [Google Scholar]
  25. Y. Hirata, Unified representation of thermal conductivities for movement of electrons and lattice vibration of atoms, Ceram. Int. 46, 10130–10134 (2020) [CrossRef] [Google Scholar]
  26. R.Z. Xu, J.L. Zhang, X.Y. Fan et al., Effect of MnO on high-alumina slag viscosity and erosion behavior of refractory in slags, ISIJ Int. 57, 1887–1894 (2017) [CrossRef] [Google Scholar]
  27. R.Z. Xu, J.L. Zhang, Z.S. Li et al., Erosion behavior of alumina containing refractory in blast furnace hearth by CaO-SiO2-MgO-Al2O3-Cr2O3 slags, ISIJ Int. 59, 1933–1939 (2019) [CrossRef] [Google Scholar]
  28. A.P. Luz, M.M. Miglioli, T.M. Souza et al., Effect of Al4SiC4 on the Al2O3-SiC-SiO2-C refractory castables performance, Ceram. Int. 38, 3791–3800 (2012) [CrossRef] [Google Scholar]
  29. Z.Y. Wang, C. Wang, J.L. Zhang et al., Enhanced corrosion resistance to molten iron of carbon bricks through nano-scale micropores and alumina addition, Metall. Res. Technol. 119, 308 (2022) [CrossRef] [EDP Sciences] [Google Scholar]
  30. Y.B. Xu, S.B. Sang, Y.W. Li et al., Pore structure, permeability, and alkali attack resistance of Al2O3-C refractories, Metall. Mater. Trans. A 45, 2885–2893 (2014) [CrossRef] [Google Scholar]
  31. X.Y. Fan, J.L. Zhang, K.X. Jiao et al., Distribution of harmful elements in dissected 125 m3 blast furnace, Can. Metall. Q. 58, 400–409 (2019) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.