Open Access
Issue
Metall. Res. Technol.
Volume 122, Number 1, 2025
Article Number 115
Number of page(s) 11
DOI https://doi.org/10.1051/metal/2024107
Published online 06 January 2025
  1. A. Akhunbayev, Sostoyaniye i perspektivy ugol’noy promyshlennosti Kazakhstana [State and prospects of the coal industry of Kazakhstan], Min. Metall. Indust. 8, 26–29 (2017) (in Russ.) [Google Scholar]
  2. Z. Atakhanova, S. Azhibay, Assessing economic sustainability of mining in Kazakhstan, Miner. Econ. 36, 719–731 (2023) [Google Scholar]
  3. R.A. Alshanov, Kazakhstan na mirovom mineral’no-syr’yevom rynke: problemy i ikh resheniye : analiz i prognoz [Kazakhstan in the global mineral resources market: problems and their solutions: analysis and forecast], Prínt-S, Almaty, 2004, (in Russ.) [Google Scholar]
  4. B. Akhmetzhanov, K.B. Tazhibekova, A.A. Shametova, Ugol’naya promyshlennost’ Kazakhstana: problemy i perspektivy [Coal industry of Kazakhstan: problems and prospects], Bull. Karaganda Univ. Ser. Econ. 4, 63–69 (2018) [Google Scholar]
  5. T.I. Chernyshova, N.V. Alpatov, Polucheniye toplivnykh briketov iz otkhodov metallurgicheskogo proizvodstva [Production of fuel briquettes from metallurgical waste], Aktual’nyye voprosy sovremennoy nauki [Current issues of modern science] 29, 174–183 (2013) (in Russ.) [Google Scholar]
  6. M.Y. Shpirt, V.B. Artem’yev, S.A. Silyutin, Ispol’zovaniye tverdykh otkhodov dobychi i pererabotki ugley [Use of solid waste from coal mining and processing], Gornoye delo, Moscow, 2013, (in Russ.) [Google Scholar]
  7. M.Y. Shpirt, E.G. Gorlov, A.V. Shumovskiy, Concept of a technological complex for coal waste processing with the production of a wide range of commercial products, Solid Fuel Chem. 53, 352–356 (2019) [CrossRef] [Google Scholar]
  8. G.B. Skripchenko, R.Y. Kleyman, M.Y. Shpirt et al., Phase composition of coal mining and preparation wastes and its role in determining the trends of their usage, Coal Sci. Technol. 24, 1637–1639 (1995) [CrossRef] [Google Scholar]
  9. N.Y. Svechnikova, S.V. Yudina, N.I. Mamedalina, Analiz otkhodov flotatsionogo obogashcheniya uglya [Analysis of coal flotation enrichment waste], Theory Technol. Metall. Prod. 1, 19–21 (2015) [Google Scholar]
  10. R. Ya. Kleiman, G.B. Skripchenko, M. Ya. Shpirt et al., Quantitative phase analysis of coal-mining and enrichment wastes, Solid Fuel Chem. 23, 126–128 (1989) [Google Scholar]
  11. V.I. Golik, Technology of the environmentally correct recultivation of the mine surface with leaching of the coal enrichment tailings, Bezopasnost’ Truda v Promyshlennosti, 4, 13–17 (2022) [Google Scholar]
  12. B. Klojzy-Karczmarczyk, J. Mazurek, Proposals to extend actions to the management of waste rock from hard coal mining, Zeszyty Naukowe Instytutu Gospodarki Surowcami Mineralnymi Polskiej Akademii Nauk, 98, 151–166 (2017) [Google Scholar]
  13. J. Feliks, B. Klojzy-Karczmarczyk, M. Wiencek, Granulating coal sludge and their mixtures to improve transport properties, Zeszyty Naukowe Instytutu Gospodarki Surowcami Mineralnymi i Energiа Polskiej Akademii Nauk, 104, 173–188 (2018) [Google Scholar]
  14. A. Bolatova, A. Kuttybayev, A. Каinazarov et al., Use of mining and metallurgical waste as a backfill of worked-out spaces, News Natl. Acad. Sci. Republic Kazakhstan, Ser. Geol. Tech. Sci. 1, 33–38 (2022) [Google Scholar]
  15. V. Murko, V. Hamalainen, The development of environmentally friendly technologies of using coals and products of their enrichment in the form of coal water slurries, E3S Web Conf. 21, 01029 (2017) [CrossRef] [EDP Sciences] [Google Scholar]
  16. V. Messerle, M. Orynbasar, K. Umbetkaliev et al., Gasifi cation of carbon-contaning waste in a plasma-chemical reactor, Combustion Plasma Chem. 21, 191–200 (2023) [Google Scholar]
  17. F. Cheng, Y. Zhang, G. Zhang et al., Eliminating environmental impact of coal mining wastes and coal processing by-products by high temperature oxy-fuel CFB combustion for clean power Generation: a review, Fuel, 373, 132341 (2024) [CrossRef] [Google Scholar]
  18. V.N. Petukhov, N.Y. Svechnikova, S.V. Yudina et al., Utilization of coal-flotation wastes at OAO TsOF Belovskaya, Coke Chem. 59, 200–203 (2016) [CrossRef] [Google Scholar]
  19. N.V. Panishev, V.A. Bigeyev, Ye.S. Galiulina, Perspektivy utilizatsii khvostov ugleobogashcheniya i tverdykh otkhodov teplovykh elektrostantsiy [Prospects for the utilization of coal tailings and solid waste from thermal power plants], Theory Technol. Metall. Prod. 2, 69–77 (2015) [Google Scholar]
  20. M. Pashkevich, I. Sverchkov, M. Chukaeva, Current problems in integrated processingand-utilization of hard-to-process ores and man-induced mineral raw materials (The Plaksin’s Readings — 2017), Obogashchenie Rud, 6, 54–57 (2017) [CrossRef] [Google Scholar]
  21. L. Hai-bing, H. He-long, F. Xing-min et al., Characteristics and kinetics of the pyrolysis of coking coal tailings, J. Environ. Eng. Technol. 2, 525–530 (2012) [Google Scholar]
  22. S. Liu, X. Fu, F. Zhu et al., Catalytic pyrolysis of coking-coal tailings for production of hydrogen-rich fuel gas, Chin. J. Environ. Eng. 7, 4067–4071 (2013) [Google Scholar]
  23. A. Yu. Stolboushkin, A.I. Ivanov, O.A. Fomina, Use of coal-mining and processing wastes in production of bricks and fuel for their burning, Procedia Eng. 150, 1496–1502 (2016) [CrossRef] [Google Scholar]
  24. V. Lemeshev, I. Gubin, Yu. Savel’ev et al., Utilization of coal-mining waste in the production of building ceramic materials, Glass Ceram. 61, 308–311 (2004) [CrossRef] [Google Scholar]
  25. S. Yagüe, I. Sánchez, R. Vigil de la Villa et al., Coal-mining tailings as a pozzolanic material in cements industry, Minerals 8, 46 (2018) [CrossRef] [Google Scholar]
  26. Ye.S. Abdrakhimova, Ispol’zovaniye otkhodov ugleobogashcheniya i mezhslantsevoy gliny v proizvodstve keramicheskogo kirpicha [Use of coal enrichment waste and intershale clay in the production of ceramic brick], Coal 7, 52–55 (2021) [Google Scholar]
  27. N.V. Boltakova, G.R. Faseeva, R.R. Kabirov et al., Utilization of inorganic industrial wastes in producing construction ceramics, review of Russian experience for the years 2000-2015, Waste Manag. 60, 230–246 (2017) [CrossRef] [Google Scholar]
  28. A.A. Lavrinenko, N.Y. Svechnikova, N.S. Konovnitsyna et al., Utilization of bituminous coal flotation wastes in the manufacture of ceramic brick, Solid Fuel Chem. 52, 406–410 (2018) [CrossRef] [Google Scholar]
  29. I.A. Denisova, N.A. Vilbitskaya, A.I. Yatsenko et al., The use of pyrite concentrate and waste formed at the brown coals enlargement, Mater. Sci. Forum 974, 336–341 (2020) [Google Scholar]
  30. S.N. Abdurakhmanov, Tekhnologiya polucheniya aglosporita iz flotatsionnykh khvostov ugleobogashcheniya i mineral’nogo syr’ya [Technology of obtaining agglomerate from flotation tailings of coal enrichment and mineral raw materials], P.P. Budnikov VNIISTROM, Kraskovo, 1994, [Google Scholar]
  31. V.Z. Abdrakhimov, N.V. Lazareva, Ispol’zovaniye otkhodov flotatsii ugleobogashcheniya v proizvodstve keramzita sposobstvuyet ekologii i rasshiryayet granitsy zemleustroystva i kadastrov [Use of coal flotation waste in expanded clay production promotes ecology and expands the boundaries of land management and cadastres], Ekspert: teoriya i praktika, 6, 40–47 (2020) [Google Scholar]
  32. Ye.I. Goncharuk, N. P. Tret’yak, Gigiyenicheskoye obosnovaniye dozy vneseniya otkhodov flotatsii uglya v pochvu v kachestve udobreniya [Hygienic justification for the dose of applying coal flotation waste into the soil as fertilizer, Hygiene Sanitation 10, 7–10 (1990) [Google Scholar]
  33. M.T. Yong, M. Babla, S. Karan, Coal tailings as a soil conditioner: evaluation of tailing properties and effect on tomato plants, Plant Growth Regul. 98, 439–450 (2022) [CrossRef] [PubMed] [Google Scholar]
  34. S. Soloviev, I. Semina, V. Androkhanov et al., Restoration of vegetation cover in reclaimed areas with coal preparation waste in Kuzbass, E3S Web Conf. 244, 01015 (2021) [CrossRef] [EDP Sciences] [Google Scholar]
  35. K. Nunes, J. Illi, V. Jurado-Davila et al., Use of coal beneficiation tailings as solid sorbents in the treatment of nitrate-contaminated real wastewater, Appl. Water Sci. 10, 93 (2020) [CrossRef] [Google Scholar]
  36. N.A. Korolev, I.A. Korolev, Netraditsionnyye napravleniya ispol’zovaniya otkhodov dobychi i obogashcheniya uglya [Unconventional areas of use of coal mining and beneficiation waste] Proceedings of VIII All-Russian scientific and practical conference of young scientists with international participation “Young Russia”, Kemerovo, April 19-22, 2016, Kuzbass State Technical University named after T. F. Gorbachev; Kemerovo (2016) [Google Scholar]
  37. Q. Zhang, L. Ma, Y. Peng et al., Sustainable bioleaching of heavy metals from coal tailings using Bacillus inaquosorum B.4: mechanistic insights and environmental implications, J. Environ. Chem. Eng. 12, 113400 (2024) [CrossRef] [Google Scholar]
  38. M.S. Lebzin, A.I. Bolgova, M.S. Ovsyannikov et al., Ecological aspects of deep processing of tailings of Donbass coal enrichment, News Ural State Mining Univ. 2, 96–103 (2022) [Google Scholar]
  39. T.G. Cherkasova, E.V. Cherkasova, A.V. Tikhomirova et al., Rare earth elements in Kuzbass coal processing wastes, Ugol, 3, 65–68 (2023) [CrossRef] [Google Scholar]
  40. E.S. Prokopiev, O.L. Alekseeva, Evaluating the possibility for coal-containing waste of West Siberian Iron-and-Steel Works sludge storage to be involved in processing, Earth Sci. Subsoil Use, 4, 446–457 (2022) [Google Scholar]
  41. N.I. Belomerya, A. Yu. Shevchenko, Ispol’zovaniye otkhodov ugleobogashcheniya dlya polucheniya glinozema [Use of coal enrichment waste to produce alumina], Proceedings of the International Scientific and Practical Conference: Environmental Problems of Industrial Megacities. Donetsk, Avdeevka, June 1-4, 2004, Donetsk, DonNTU of the Ministry of Education and Science of Ukraine, 471–475 (2004). [Google Scholar]
  42. V.I. Golik, Yu.I. Razorenov, Khvosty obogashcheniya uglya kak syr’ye dlya proizvodstva stroitel’nykh materialov [Coal enrichment tailings as a raw material for the production of building materials], Dry Construction Mixtures, 4, 29–32 (2013) [Google Scholar]
  43. M.S. Lebzin, A.I. Bolgova, M.S. Ovsyannikov et al., Ecological aspects of deep processing of tailings of donbass coal enrichment, News Ural State Mining Univ. 2, 96–103 (2022) [Google Scholar]
  44. V.I. Komashchenko, E.D. Vorobev, Y.I. Razorenov, Extraction of metals when recycling enrichment of ores, Bull. Tomsk Polytech. Univ. Geo Аssets Eng. 328, 18–24 (2017) [Google Scholar]
  45. O.T. Ibraeva, I.K. Ibraev, G.Sh. Zhaksybaeva, Directions use of waste coal flotation in metallurgical рroduction, Sci. Rev. Tech. Sci. 2, 26–31 (2016) [Google Scholar]
  46. B. Machulec, W. Bialik, S. Gil, Application of the mining industry wastes as raw material for melting of the complex fesial ferroalloys, Arch. Metall. Mater. 63, 975–979 (2018) [Google Scholar]
  47. N.Yu. Svechnikova, V.N. Petukhov, S.V. Yudina et al., Use of coal preparation waste as a reducing agent in the Romelt process, Chernye Metally, 12, 14–19 (2023) [CrossRef] [Google Scholar]
  48. V. Shevko, D. Aitkulov, A. Badikova, Comprehensive processing of vanadium-containing black shale tailings, Period. Polytech. Chem. Eng. 66, 617–628 (2022) [CrossRef] [Google Scholar]
  49. A.G. Kaliakparov, Razrabotka sposobov al’ternativnogo proizvodstva i ispol’zovaniya uglerodistykh vosstanoviteley v usloviyakh Kazakhstana [Development of methods for alternative production and use of carbonaceous reducing agents in the conditions of Kazakhstan], Zh. Abishev Chemical and Metallurgical Institute, Karaganda, 2010, [Google Scholar]
  50. N.M. Komekova, V.A. Kozlov, K.M. Smirnov et al., Autoclave leaching of vanadium from black shale, Metallurgist 60, 1186–1190 (2017) [CrossRef] [Google Scholar]
  51. S.K. Dzhumankulova, V.I. Zhuchkov, Z.A. Alybaev, Review of state and prospects for development of vanadium production in the Kazakhstan Republic, Metallurgist 64, 75–81 (2020) [CrossRef] [Google Scholar]
  52. A. Kali, L.T. Boshkayeva, S.K. Dzhumankulova et al., Sposoby pererabotki vanadiyevykh rud slozhnogo sostava [Methods for processing vanadium ores of complex composition], Proceedings of Satpaev Readings − 2022, Satbayev University, Almaty, Kazakhstan, 3, 207–211 (2022) [Google Scholar]
  53. YA.V. Grazhdanova, L.KH. Batrakova, V.A. Kozlov, Izvlecheniye vanadiya i urana iz kvartsitov Karatau metodom perkolyatsionnogo vyshchelachivaniya [Extraction of vanadium and uranium from Karatau quartzites by percolation leaching], Bull. Eng. Acad. 1, 73–77 (2003) [Google Scholar]
  54. A. Roine, HSC Chemistry Software, Metso Outotec, Pori, 2021. Available at: www.mogroup.com/hsc. Accessed: 12.02.2024 [Google Scholar]
  55. V.M. Shevko, G.M. Serzhanov, G.E. Karataeva et al., Calculation of the equilibrium distribution of elements in relation to the software package HSC-5.1. Computer program // Certificate of the Republic of Kazakhstan # 1501 (29.01.2019) [Google Scholar]
  56. G.M. Grinfeld, A.V. Moiseev, Methods for optimizing experiments in chemical technology, FSBEI HPE KnAGTU, Komsomolsk-on-Amur, 2014, [Google Scholar]
  57. S.L. Akhnazarova, V.V. Kafarov, Methods for optimizing experiments in chemical technology: Textbook for universities, Higher School, Moscow, 1985, [Google Scholar]
  58. A.M. Inkov, T. Tapalov, U.U. Umbetov et al., Optimization methods, SKSU, Shymkent, 2003, [Google Scholar]
  59. V.F. Ochkov, Mathcad 14 for students, engineers and designers, BHV-Petersburg, Saint Petersburg, 2007, [Google Scholar]
  60. V. Shevko, N. Mirkayev, B. Lavrov et al., Obtaining a silicon alloy from a sedimentary rock − Tripoli, J. Chem. Technol. Metall. 58, 367–375 (2023) [CrossRef] [Google Scholar]
  61. V.M. Shevko, R.A. Uteeva, A.B. Badikova et al., Production of ferroalloys, calcium carbide, and phosphorus from high-silicon phosphorite, Rasayan J Chem. 16, 955–963 (2023) [CrossRef] [Google Scholar]
  62. State standard 1415 −93, Ferrosilicon. Technical requirements and terms of delivery, Standartinform, Moscow, 2011 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.