Open Access
Review
Issue
Metall. Res. Technol.
Volume 122, Number 5, 2025
Article Number 510
Number of page(s) 15
DOI https://doi.org/10.1051/metal/2025056
Published online 30 July 2025
  1. J.L. Caillerie, F. Wilmotte, Plomb et alliages de plomb, Tech. Ing. M510, M510–M511 (1993) [Google Scholar]
  2. J.S. Casas, J. Sordo, Lead: chemistry, analytical aspects, environmental impact and health effects, Elsevier, 2011 [Google Scholar]
  3. I.A. Bergdahl, S. Skerfving, Chapter 19 − Lead, in: G.F. Nordberg, M. Costa (Eds.), Handbook on the toxicology of metals (Fifth Edition), Academic Press 2022, pp. 427–493 [Google Scholar]
  4. P. Gottesfeld, Lead industry influence in the 21st Century: an old playbook for a “modern metal”, Am. J. Public Health. 112, S723–S729 (2022) [Google Scholar]
  5. Statista, Distribution of lead consumption worldwide in 2022, by end-use. https://www.statista.com/statistics/891778/distribution-of-global-lead-consumption-by-end-use/ [Google Scholar]
  6. Statista, Global lead industry − statistics & facts. https://www.statista.com/topics/5177/lead [Google Scholar]
  7. Y.L. Yu, W.Y. Yang, A. Hara et al., Public and occupational health risks related to lead exposure updated according to present-day blood lead levels, Hypertens. Res. 46, 395–407 (2023) [Google Scholar]
  8. P. Bača, P. Van`ysek, Issues concerning manufacture and recycling of lead, Energies 16, 4468 (2023) [Google Scholar]
  9. C. Lageot, C. Feugeas, Etude de la corrosion des sceaux en plomb, ArchéoSci. 1, 151–153 (1981) [Google Scholar]
  10. J. Verney, Problèmes de Corrosion du Plomb en Présence d’eau, sous differents types de composition et à différents températures, Trib. Cebedeau 25, 507 (1972) [Google Scholar]
  11. S.A. Bradford, S.A. Bradford, Materials selection, corrosion control, Springer, 1993, pp. 188–213 [Google Scholar]
  12. J. Tétreault, E. Cano, M. van Bommel et al., Corrosion of copper and lead by formaldehyde, formic and acetic acid vapours, Stud. Conserv. 48, 237–250 (2003) [Google Scholar]
  13. S.J. Alhassan, Corrosion of lead and lead alloys, in: Corrosion: Materials, ASM International, 2005 [Google Scholar]
  14. G.O. Hiers, Lead as a material for chemical equipment, Ind. Eng. Chem. 15, 467–469 (1923) [Google Scholar]
  15. A.J. Davidson, S.P. Binks, J. Gediga, Lead industry life cycle studies: environmental impact and life cycle assessment of lead battery and architectural sheet production, Int. J. Life Cycle Assess. 21, 1624–1636 (2016) [Google Scholar]
  16. B. Schotte, A. Adriaens, Treatments of corroded lead artefacts an overview, Stud. Conserv. 51, 297–304 (2006) [Google Scholar]
  17. The Business Research Company, Lead Global Market Report, 2025. https://www.thebusinessresearchcompany.com/report/lead-global-market-report [Google Scholar]
  18. J. Švadlena, T. Prošek, K.C. Strachotová et al., Chemical removal of lead corrosion products, Mater. 13, 5672 (2020) [Google Scholar]
  19. R.H. Gaines, The corrosion of lead, Ind. Eng. Chem. 5, 766–768 (1913) [Google Scholar]
  20. T.E. Graedel, Chemical mechanisms for the atmospheric corrosion of lead, J. Electrochem. Soc. 141, 922 (1994) [Google Scholar]
  21. Appendix G: The atmospheric corrosion chemistry of lead, in: Atmospheric Corrosion, John Wiley & Sons, Ltd, 2016, pp. 316–326 [Google Scholar]
  22. M.R. Schock, Understanding corrosion control strategies for lead, J. − Am. Water Works Assoc. 81, 88–100 (1989) [Google Scholar]
  23. F. Lequien, G. Moine, A. Lequien et al., What happens when a Pb-Sn coating deposited on low carbon steel is exposed in an HCl-polluted wet environment? Development of a corrosion mechanism, Mater. Corros. 73, 1459–1473 (2022) [Google Scholar]
  24. A. Niklasson, L.G. Johansson, J.E. Svensson, Influence of acetic acid vapor on the atmospheric corrosion of lead, J. Electrochem. Soc. 152, B519 (2005) [Google Scholar]
  25. A. Niklasson, L.G. Johansson, J.E. Svensson, Atmospheric corrosion of lead: the influence of formic acid and acetic acid vapors, J. Electrochem. Soc. 154, C618 (2007) [Google Scholar]
  26. ISO, Peintures et vernis − Anticorrosion des structures en acier par systèmes de peinture − Partie 2 : Classification des environnements. ISO 12944-2:2017 [Google Scholar]
  27. M. Kouřil, T. Boháčková, K.C. Strachotová et al., Lead corrosion and corrosivity classification in archives, museums, and churches, Mater. 15, 639 (2022) [Google Scholar]
  28. K. Kreislova, P. Fialová, T. Bohackova et al., Indoor corrosivity classification based on lead coupons, KOM-Corros. Mater. Prot. J. 65, 7–12 (2021) [Google Scholar]
  29. C.D. Evans, D.T. Monteith, D. Fowler et al., Hydrochloric acid: an overlooked driver of environmental change, Environ. Sci. Technol. 45, 1887–1894 (2011) [Google Scholar]
  30. T.A. Crisp, B.M. Lerner, E.J. Williams et al., Observations of gas phase hydrochloric acid in the polluted marine boundary layer, J. Geophys. Res. Atmos. 119, 6897–6915 (2014) [Google Scholar]
  31. Y.H. Kiang, Pre dict ing dew points of acid gases, Chem. Eng. 88, 127 (1981) [Google Scholar]
  32. J.J. Fritz, C.R. Fuget, Vapor pressure of aqueous hydrogen chloride solutions, O° to 50 °C, Ind. Eng. Chem. Chem. Eng. Data Ser. 1, 10–12 (1956) [Google Scholar]
  33. F.C. Zeisberg, Partial vapor pressures of aqueous HCl solutions, Chem. Metall. Eng. 32, 326–327 (1925) [Google Scholar]
  34. J.S. Park, S.H. Moon, Use of cascade reduction potential for selective precipitation of Au, Cu, and in hydrochloric acid solution, Korean J. Chem. Eng. 19, 797–802 (2002) [Google Scholar]
  35. Chm Ulaval (n.d.) Solubility Products Constants. Retrieved from http://www2.chm.ulaval.ca/gecha/chm1903/6_solubilite_solides/solubility_products.pdf (Accessed: 2025-01-16) [Google Scholar]
  36. A. Towarek, A. Mistewicz, E. Pilecka-Pietrusińska et al., Corrosion degradation of archaeological lead: A review and case study, J. Archaeol. Sci. Rep. 45, 103611 (2022) [Google Scholar]
  37. R. Salghi, M. Mihit, B. Hammouti et al., Electrochemical behaviour of lead in hydrochloric acid solution in the presence of inorganic ions, J. Iranian Chem. Res. (2009) [Google Scholar]
  38. I. De Ryck, E. Van Biezen, K. Leyssens et al., Study of tin corrosion: the influence of alloying elements, J. Cult. Heritage 5, 189–195 (2004) [Google Scholar]
  39. M. Pourbaix, Atlas of electrochemical equilibria in aqueous solutions, NACE, 1966 [Google Scholar]
  40. P. Delahay, M. Pourbaix, P. Van Rysselberghe, Potential-pH diagram of lead and its applications to the study of lead corrosion and to the lead storage battery, J. Electrochem. Soc. 98, 57 (1951) [Google Scholar]
  41. Rabald, Atlas d’Equilibres Electrochimiques, par M. Pourbaix, Directeur du Centre Belge d’Etude de la Corrosion “CEBELCOR”, Chargé de cours à l’Université Libre de Bruxelles en E. Deltbombe, J. Schmets, C. Vanleugenhaghe, Chercheurs au “Cebelcor” et Mme M. Moussard, MM. J. Besson, J.−P. Brenet, WG. Burgers, G. Charlot, R.−M. Garrels, T.−P. Hoar, F. Jolas, W. Kunz, M. Maraghini, R. Piontelli, K. Schwabe, G. Valensi, P. Van Rysselberghe, Members du “CITCE” et AL Pitaman, Officie of Naval Research “ONR” Format 4°(21 × 27) 644 Seiten, Preis kart. frs. 140,-($29,-). 1963, Paris, Verlag Gauthier-Villars (1963) [Google Scholar]
  42. S.J. Alhassan, Corrosion of lead and lead alloys, in: Corrosion: Materials, ASM International, 2005 [Google Scholar]
  43. K.A. AL-Saadie, S.A. Al-Safi, D.E. Al-Mammar, Effect of (1, 4) phenylenediamine on the corrosion of Lead in 1M Hydrochloric acid solution, J. Um-Salama Sci. Women Univ. Baghdad, acceptedon, 30 (2007) [Google Scholar]
  44. K. Al-Saadie, The effect of linear alkyl benzene sulfonate on corrosion of aluminum, zinc and lead in 1M HCl, Iraqi Natl. J. Chem. 8, 76–86 (2008) [Google Scholar]
  45. A. Azizi, S.M.S. Ghasemi, A comparative analysis of the dissolution kinetics of lead from low grade oxide ores in HCl, H2SO4, HNO3 and citric acid solutions, Metall. Res. Technol. 114, 406 (2017) [Google Scholar]
  46. S.A. El Wanees, E.E.A. Aal, N-Phenylcinnamimide and some of its derivatives as inhibitors for corrosion of lead in HCl solutions, Corros. Sci. 52, 338–344 (2010) [Google Scholar]
  47. B.S. Evans, A rapid method of dissolving lead alloys preparatory to the determination of tin and antimony, Analyst 57, 554–559 (1932) [Google Scholar]
  48. R.G. Barradas, S. Fletcher, J.D. Porter, The anodic behaviour of lead amalgam electrodes in HCl solution, J. Electroanal. Chem. Interfacial Electrochem. 80, 295–304 (1977) [Google Scholar]
  49. R.G. Barradas, K. Belinko, E. Ghibaudi, Rotating ring-disc electrode studies of lead in HCl and NaCl solutions, Can. J. Chem. 53, 407–413 (1975) [Google Scholar]
  50. R.G. Barradas, K. Belinko, J. Ambrose, Electrochemical behavior of the lead electrode in HCl and NaCl aqueous electrolytes, Can. J. Chem. 53, 389–406 (1975) [Google Scholar]
  51. R.G. Barradas, K. Belinko, W. Shoesmith, Study of surface effects in the formation of lead chloride on lead electrodes in aqueous HCl by electrochemical methods and scanning electron microscopy, Electrochim. Acta 21, 357–365 (1976) [Google Scholar]
  52. R.G. Barradas, K. Belinko, E. Ghibaudi, Effect of dissolved gases on the Pb/PbCl2 electrode in aqueous chloride electrolytes, Chem. Phys. Aqueous Gas Sol. 357 (1975) [Google Scholar]
  53. J. Ambrose, R.G. Barradas, K. Belinko et al., Reactions at the lead electrode/hydrochloric acid interface, J. Colloid Interface Sci. 47, 441–454 (1974) [Google Scholar]
  54. A.M. Abd El-Halim, M.H. Fawzy, A. Saty, Cyclic voltammetric behaviour and some surface characteristics of the lead electrode in aqueous HCl solutions, J. Chem. Technol. Biotechnol. 58, 165–175 (1993) [Google Scholar]
  55. S.S. Abd El Rehim, A.M. El-Halim, E.E. Foad, Potentiodynamic and cyclic voltammetric behaviour of the lead electrode in HCl solutions, Surf. Technol. 18, 313–325 (1983) [Google Scholar]
  56. E.E. Abd El Aal, S. Abd El Wanees, Kinetics of anodic behaviour of Pb in HCl solutions, Corros. Sci. 51, 458–462 (2009) [Google Scholar]
  57. N.A. Lange, Lange’s handbook of chemistry (17th ed.) McGraw-Hill Education, 2017 [Google Scholar]
  58. G. Petiau, Second generation of lead-lead chloride electrodes for geophysical applications, Pure Appl. Geophys. 157, 357–382 (2000) [CrossRef] [Google Scholar]
  59. A.J. Bard, R. Parsons, J. Jordan, Standard potentials in aqueous solutions, Marcel Dekker, New York, 1985 [Google Scholar]
  60. C.G. Zoski, Handbook of electrochemistry, Elsevier, 2006 [Google Scholar]
  61. H.M. Abd El-Lateef, A. El-Sayed, H.S. Mohran et al., Corrosion inhibition and adsorption behavior of phytic acid on Pb and Pb-In alloy surfaces in acidic chloride solution, Int. J. Ind. Chem. 10, 31–47 (2019) [Google Scholar]
  62. W.A. Badawy, M.M. Hefny, S.S. El-Egamy, Effect of some organic amines as corrosion inhibitors for lead in 0.3 M HCl solution, Corrosion 46, 978–982 (1990) [Google Scholar]
  63. J. González, E. Laborda, Á. Molina, Voltammetric kinetic studies of electrode reactions: guidelines for detailed understanding of their fundamentals, J. Chem. Educ. 100, 697–706 (2022) [Google Scholar]
  64. R.G. Barradas, S. Fletcher, Temperature effects in the electrochemical behaviour of cycled lead electrodes in HCl solutions, Electrochim. Acta 22, 237–242 (1977) [Google Scholar]
  65. P.G. Harrison, G. Holt, Kinetic study of the reactions between lead metal and hydrogen bromide and hydrogen chloride, J. Chem. Soc. Faraday Trans. 88, 1027–1032 (1992) [Google Scholar]
  66. A.A. Al-Amiery, E. Yousif, W.N.R.W. Isahak et al., A review of inorganic corrosion inhibitors: types, mechanisms, and applications, Tribol. Ind. 44, 313 (2023) [Google Scholar]
  67. K. Bijapur, V. Molahalli, A. Shetty et al., Recent trends and progress in corrosion inhibitors and electrochemical evaluation, Appl. Sci. 13, 10107 (2023) [Google Scholar]
  68. M. Hamadouche, I. Boudechicha, Influence du milieu acide sur la corrosion du plomb, Faculté des Sciences et Technologies, 2020 [Google Scholar]
  69. L. Hamadi, S. Mansouri, K. Oulmi et al., The use of amino acids as corrosion inhibitors for metals: A review, Egypt. J. Petrol. 27, 1157–1165 (2018) [Google Scholar]
  70. N.H. Helal, M.M. El-Rabiee, G.M. Abd El-Hafez et al., Environmentally safe corrosion inhibition of Pb in aqueous solutions. J. Alloys Compd. 456, 372–378 (2008) [Google Scholar]
  71. W.A. Bodawy, M.M. Hefny, S.S. El-Egamy, Effect of some organic amines as corrosion inhibitors for lead in 0.3 M HCl solution, Corrosion (Houston, Tex.) 46, (1990) [Google Scholar]
  72. A.M. Abdel-Karim, A.M. El-Shamy, A review on green corrosion inhibitors for protection of archeological metal artifacts, J. Bio Tribo-Corros. 8, 35 (2022) [Google Scholar]
  73. E. Rocca, F. Mirambet, Des savons métalliques pour la protection du patrimoine, Actualite Chimique 312, 65 (2007) [Google Scholar]
  74. P. Zhang, J.A. Ryan, Transformation of Pb(II) from cerrusite to chloropyromorphite in the presence of hydroxyapatite under varying conditions of pH, Environ. Sci. Technol. 33, 625–630 (1999) [Google Scholar]
  75. M. Andrunik, M. Wołowiec, D. Wojnarski et al., Transformation of Pb, Cd, and Zn minerals using phosphates, Minerals 10, 342 (2020) [Google Scholar]
  76. J. Zhao, D.E. Giammar, J.D. Pasteris et al., Formation and aggregation of lead phosphate particles: implications for lead immobilization in water supply systems, Environ. Sci. Technol. 52, 12612–12623 (2018) [Google Scholar]
  77. J.D. Hopwood, H. Casey, M. Cussons et al., Spherulitic lead calcium apatite minerals in lead water pipes exposed to phosphate-dosed tap water, Environ. Sci. Technol. 57, 4796–4805 (2023) [Google Scholar]
  78. Headquarters Corporate (n.d.), Sodium silicate corrosion inhibitors: issues of effectiveness and mechanism [Google Scholar]
  79. H. Ke, C.D. Taylor, Density functional theory: an essential partner in the integrated computational materials engineering approach to corrosion, Corrosion 75, 708–726 (2019) [Google Scholar]
  80. I.B. Obot, D.D. Macdonald, Z.M. Gasem, Density functional theory (DFT) as a powerful tool for designing new organic corrosion inhibitors. Part 1: an overview, Corros. Sci. 99, 1–30 (2015) [Google Scholar]
  81. F. Lequien, G. Moine, Corrosion of a 75Sn/25Pb coating on a low carbon steel in a gaseous environment polluted with HCl: mechanism, Mater. Corros. 69, 1422–1430 (2018) [Google Scholar]
  82. M. Menut, F. Lequien, Modelling of lead corrosion in contact with an anaerobic HCl solution, Influence of the Corrosion Product Presence. Coatings 12, 1291 (2022) [Google Scholar]
  83. V. Boovaragavan, R.N. Methakar, V. Ramadesigan et al., A mathematical model of the lead-acid battery to address the effect of corrosion, J. Electrochem. Soc. 156, A854 (2009) [Google Scholar]
  84. L.L. Stewart, D.N. Bennion, R.M. LaFollette, Mathematical model of the anodic oxidation of lead, J. Electrochem. Soc. 141, 2416 (1994) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.