Open Access
Issue
Metall. Res. Technol.
Volume 119, Number 5, 2022
Article Number 523
Number of page(s) 13
DOI https://doi.org/10.1051/metal/2022079
Published online 21 September 2022
  1. N. Guo, M.C. Leu, Additive manufacturing: technology, applications and research needs, Front. Mech. Eng. 8 , 215–243 (2013) [CrossRef] [Google Scholar]
  2. A. Chniouel, P.F. Giroux, F. Lomello et al., Influence of substrate temperature on microstructural and mechanical properties of 316L stainless steel consolidated by laser powder bed fusion, Int. J. Adv. Manuf. Technol. 111 , 3489–3503 (2020) [CrossRef] [Google Scholar]
  3. Y.M. Wang, T. Voisin, J.T. McKeown et al., Additively manufactured hierarchical stainless steels with high strength and ductility, Nat. Mater. 17 , 63–70 (2018) [CrossRef] [PubMed] [Google Scholar]
  4. P. Bajaj, A. Hariharan, A. Kini et al., Steels in additive manufacturing: a review of their microstructure and properties, Mater. Sci. Eng. A 772, 138633 (2020) [CrossRef] [Google Scholar]
  5. Y. Zhong, L. Liu, S. Wikman et al., Intragranular cellular segregation network structure strengthening 316L stainless steel prepared by selective laser melting, J. Nucl. Mater. 470 , 170–178 (2016) [CrossRef] [Google Scholar]
  6. M. Godec, S. Zaefferer, B. Podgornik et al., Quantitative multiscale correlative microstructure analysis of additive manufacturing of stainless steel 316L processed by selective laser melting, Mater. Charact. 160 , 110074 (2020) [CrossRef] [Google Scholar]
  7. M.H. Farshidianfar, A. Khajepour, A.P. Gerlich, Effect of real-time cooling rate on microstructure in Laser Additive Manufacturing, J. Mater. Process. Technol. 231 , 468–478 (2016) [CrossRef] [Google Scholar]
  8. T. Voisin, J.B. Forien, A. Perron et al., New insights on cellular structures strengthening mechanisms and thermal stability of an austenitic stainless steel fabricated by laser powder-bed-fusion, Acta Mater. 203 , 116476 (2021) [CrossRef] [Google Scholar]
  9. G. Sander, J. Tan, P. Balan et al., Corrosion of additively manufactured alloys: a review, Corrosion 74 , 1318–1350 (2018) [Google Scholar]
  10. D. Kong, C. Dong, X. Ni et al., Corrosion of metallic materials fabricated by selective laser melting, npj Mater. Degrad. 24 , 1–14 (2019) [Google Scholar]
  11. C.Y. Yap, C.K. Chua, Z.L. Dong et al., Review of selective laser melting: Materials and applications, Appl. Phys. Rev. 2 , 041101 (2015) [Google Scholar]
  12. J.P. Oliveira, A.D. LaLonde, J. Ma, Processing parameters in laser powder bed fusion metal additive manufacturing, Mater. Des. 193 , 108762 (2020) [CrossRef] [Google Scholar]
  13. D. Kong, C. Dong, S. Wei et al., About metastable cellular structure in additively manufactured austenitic stainless steels, Addit. Manufactur. 30 , 101804 (2021) [CrossRef] [Google Scholar]
  14. X. Ni, D. Kong, W. Wu et al., Corrosion behavior of 316L stainless steel fabricated by selective laser melting under different scanning speeds, J. Mater. Eng. Perform. 27 , 101007 (2018) [Google Scholar]
  15. G. Sander, S. Thomas, V. Cruz et al., On the corrosion and metastable pitting characteristics of 316L stainless steel produced by selective laser melting, J. Electrochem. Soc. 164 , 250 (2017) [Google Scholar]
  16. Y. Sun, A. Moroz, K. Alrbaey, Sliding wear characteristics and corrosion behaviour of selective laser melted 316L stainless steel, J. Mater. Eng. Perform. 23 , 518 (2014) [CrossRef] [Google Scholar]
  17. Z. Zhang, X. Yuan, Z. Zhao et al., Electrochemical noise comparative study of pitting corrosion of 316L stainless steel fabricated by selective laser melting and wrought, J. Electroanal. Chem. 894 , 115351 (2011) [Google Scholar]
  18. D.J. Sprouster, W.S. Cunningham, G.P. Halada et al., Dislocation microstructure and its influence on corrosion behavior in laser additively manufactured 316L stainless steel, Addit. Manufactur. 47 , 102263 (2021) [CrossRef] [Google Scholar]
  19. A.B. Kale, B-K. Kim, D-Ik. Kim et al., An investigation of the corrosion behavior of 316L stainless steel fabricated by SLM and SPS techniques, Mater. Character. 163 , 110204 (2020) [CrossRef] [Google Scholar]
  20. P. Fauvet, F. Balbaud, R. Robin et al., Corrosion mechanisms of austenitic stainless steels in nitric media used in reprocessing plants, J. Nucl. Mater. 375 , 52–64 (2008) [CrossRef] [Google Scholar]
  21. H. Fayazfar, M. Salarian, A. Rogalsky et al., A critical review of powder-based additive manufacturing of ferrous alloys: process parameters, microstructure and mechanical properties, Mater. Des. 144 , 98–128 (2018) [CrossRef] [Google Scholar]
  22. Design and Construction Rules for Mechanical Components of the FBR Nuclear Installations (2007) [Google Scholar]
  23. A. Spierings, G. Levy, Comparison of density of stainless steel 316L parts produced with Selective Laser Melting using different powder grades, in 20th Annu. Int. Solid Free. Fabr. Symp. SFF 2009 (2009) [Google Scholar]
  24. S. Ren, P. Li, D. Jiang et al., Removal of metal impurities by controlling columnar grain growth during directional solidification process, Appl. Therm. Eng. 106 , 875–880 (2016) [Google Scholar]
  25. L. Beltran-Sanchez, D.M. Stefanescu, A quantitative dendrite growth model and analysis of stability concepts, Metall. Mater. Trans. A 35 , 2471–2485 (2004) [CrossRef] [Google Scholar]
  26. C. Mutke, K. Geenen, A. Röttger et al., Interaction between laser radiation and metallic powder of 316L austenitic steel during selective laser melting, Mater. Charact. 145 , 337–346 (2018) [CrossRef] [Google Scholar]
  27. M.L. Montero-Sistiaga, M. Godino-Martinez, K. Boschmans et al., Microstructure evolution of 316L produced by HP-SLM (high power selective laser melting), Addit. Manuf. 23 , 402–410 (2018) [Google Scholar]
  28. M. Ma, Z. Wang, X. Zeng, A comparison on metallurgical behaviors of 316L stainless steel by selective laser melting and laser cladding deposition, Mater. Sci. Eng. A. 685 , 265–273 (2017) [CrossRef] [Google Scholar]
  29. Y. Zhong, L. Liu, S. Wikman et al., Intragranular cellular segregation network structure strengthening 316L stainless steel prepared by selective laser melting, J. Nucl. Mater. 470 , 170–178 (2016) [CrossRef] [Google Scholar]
  30. G. Sander, A.P. Babu, X. Gao et al., On the effect of build orientation and residual stress on the corrosion of 316L stainless steel prepared by selective laser melting, Corros. Sci. 179 , 109149 (2021) [Google Scholar]
  31. A.H. Puichaud, C. Flament, A. Chniouel et al., Microstructure and mechanical properties relationship of additively manufactured 316L stainless steel by selective laser melting, EPJ Nucl. Sci. Technol. 5 , 23 (2019) [CrossRef] [EDP Sciences] [Google Scholar]
  32. G. Wang, Q. Liu, H. Rao et al., Influence of porosity and microstructure on mechanical and corrosion properties of a selectively laser melted stainless steel, J. Alloys Compd. 831 , 154815 (2020) [CrossRef] [Google Scholar]
  33. D. Kong, C. Dong, X. Ni et al., The passivity of selective laser melted 316L stainless steel, Appl. Surf. Sci. 504 , 144495 (2020) [Google Scholar]
  34. J.R. Trelewicz, G.P. Halada, O.K. Donaldson et al., Microstructure and corrosion resistance of laser additively manufactured 316L stainless steel, JOM 68 , 850–859 (2016) [CrossRef] [Google Scholar]
  35. T. Kurzynowski, K. Gruber, W. Stopyra et al., Correlation between process parameters, microstructure and properties of 316 L stainless steel processed by selective laser melting, Mater. Sci. Eng. A 718 , 64–73 (2018) [CrossRef] [Google Scholar]
  36. F. Balbaud, G. Sanchez, P. Fauvet et al., Mechanism of corrosion of AISI 304L stainless steel in the presence of nitric acid condensates, Corros. Sci. 42 , 1685–1707 (2000) [Google Scholar]
  37. V. Bague, S. Chachoua, Q.T. Tran et al., Determination of the long-term intergranular corrosion rate of stainless steel in concentrated nitric acid, J. Nucl. Mater. 392 , 396–404 (2009) [CrossRef] [Google Scholar]
  38. B. Gwinner, M. Auroy, F. Balbaud-Célérier et al., Towards a reliable determination of the intergranular corrosion rateof austenitic stainless steel in oxidizing media, Corros. Sci. 107 , 60–75 (2016) [Google Scholar]
  39. E. Tcharkhtchi-Gillard, M. Benoit, P. Clavier et al., Kinetics of the oxidation of stainless steel in hot and concentrated nitric acid in the passive and transpassive domains, Corros. Sci. 107 , 182–192 (2016) [Google Scholar]
  40. M. Shimada, H. Kokawa, Z.J. Wang et al., Optimization of grain boundary character distribution for intergranular corrosion resistant 304 stainless steel by twin-induced grain boundary engineering, Acta Mater. 50 , 2331–2341 (2002) [CrossRef] [Google Scholar]
  41. R. Li, Y. Shi, Z. Wang et al., Densification behaviour of gas and water atomized 316L stainless steel powder during selective laser melting, Appl. Surf. Sci. 256 , 4350–4356 (2010) [Google Scholar]
  42. E. Otero, A. Pardo, M.V. Utrilla et al., Corrosion behaviour of AISI 304L and 316L stainless steels prepared by powder metallurgy in the presence of sulphuric and phosphoric acid, Corros. Sci. 40 , 1421–1434 (1998) [Google Scholar]
  43. R.F. Schaller, J.M. Taylor, J. Rodelas et al., Corrosion properties of powder bed fusion additively manufactured 17–4 PH stainless steel, Corros. Sci. 73 , 796 (2017) [Google Scholar]
  44. M. Laleh, A.E. Hughes, S. Yang et al., Two and three-dimensional characterisation of localised corrosion affected by lack-of-fusion pores in 316L stainless steel produced by selective laser melting, Corros. Sci. 165 , 108394 (2020) [Google Scholar]
  45. J. Pellé, N. Gruet, B. Gwinner et al., On the role of Fe(III) ions on the reduction mechanisms of concentrated nitric acid, Electrochim. Acta 335 , 135578 (2020) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.