Issue
Metall. Res. Technol.
Volume 116, Number 5, 2019
Inclusion cleanliness in the metallic alloys
Article Number 517
Number of page(s) 6
DOI https://doi.org/10.1051/metal/2019028
Published online 17 September 2019
  1. H. Yin, H. Shibata, T. Emi, M. Suzuki, Characteristics of agglomeration of various inclusion particles on molten steel surface, ISIJ Int. 37, 946–955 (1997) [CrossRef] [Google Scholar]
  2. W. Mu, N. Dogan, K.S. Coley, Agglomeration of non-metallic inclusions at the steel/Ar interface: model application, Metall. Mater. Trans. 48B, 2093–2103 (2017) [Google Scholar]
  3. H. Shibata, H. Yin, T. Emi, The capillary effect promoting collision and agglomeration of inclusion particles at the inert gaz-steel interface, Philos. Trans. Royal Soc. A 352, 957–966 (1998) [CrossRef] [Google Scholar]
  4. C.G. Aneziris, C. Schroeder, M. Emmel, G. Schmidt, H.P. Heller, H. Berek, In situ observation of collision between exogenous and endogenous inclusions on steel melts for active steel filtration, Metall. Mater. Trans. B 44, 954–968 (2013) [CrossRef] [Google Scholar]
  5. H. Yin, H. Shibata, T. Emi, M. Suzuki, In situ observation of collisions, agglomeration and cluster formation of alumina inclusion particles on steel melts, ISIJ Int. 37, 936–945 (1997) [CrossRef] [Google Scholar]
  6. X. Changji, Wettability and agglomeration characteristics of non-metallic inclusions, PhD thesis, 2016 [Google Scholar]
  7. H. Tozaway, Y. Kato, K. Sorimach, T. Nakanish, Agglomeration and flotation of alumina clusters in molten steel, ISIJ Int. 39, 426–434 (1999) [CrossRef] [Google Scholar]
  8. P. Yan, M. Guo, B. Blanpain, In situ observation of the formation and interaction behavior of the oxide/oxysulfide inclusions on a liquid iron surface, Metall. Mater. Trans. B 45, 903–913 (2014) [CrossRef] [Google Scholar]
  9. P. Kozakevitch, L.D. Lucas, Rôle des phénomènes de surface dans l’élimination d’inclusions solides d’un bain métallique, Rev. Metall. 65, 589–598 (1968) [CrossRef] [Google Scholar]
  10. J. Pokorny, A. Pokorny, Inclusions non métalliques dans l’acier, Techniques de l’Ingénieur 2(M220), 1998. [Google Scholar]
  11. S. Kimura, Y. Nabeshima, K. Nakajima, S. Mizoguchi, Behavior of nonmetallic inclusions in front of the solid-liquid interface in low-carbon steels, Metall. Mater. Trans. 31, 1013–1021 (2000) [CrossRef] [Google Scholar]
  12. C.R. Heiple, J.R. Roper, Mechanism for minor element effect on GTA fusion zone geometry, Welding Res. 61, 97–102 (1982) [Google Scholar]
  13. C. Limmaneevichitr, S. Kou, Visualization of marangoni convection in simulated weld pools containing a surface active agent, Welding J. 39, 324–330 (2000) [Google Scholar]
  14. F.N. Rhines, R.T. DeHoff Quantitative microscopy, New York, McGraw-Hill Book Company, 1968 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.