Free Access
Issue
Metall. Res. Technol.
Volume 117, Number 4, 2020
Article Number 408
Number of page(s) 11
DOI https://doi.org/10.1051/metal/2020040
Published online 29 July 2020
  1. N.G. Kolbasnikov, M.A. Matveev, P.A. Mishnev, Effect of structure factor on high-temperature ductility of pipe steels, Met. Sci. Heat Treat. 58(1-2), 51–57 (2016) [CrossRef] [Google Scholar]
  2. B.T. Lu, J.L. Luo, Crack initiation and early propagation of X70 steel in simulated near-neutral pH groundwater, Corrosion 62(8), 723–731 (2006) [CrossRef] [Google Scholar]
  3. T. Hara, H. Asahi, H. Ogawa. Conditions of hydrogen-induced corrosion occurrence of X65 grade line pipe steels in sour environments, Corrosion 60(12), 1113–1121 (2004) [CrossRef] [Google Scholar]
  4. B. Beidokhti, A. Dolati, A.H. Koukabi. Effects of alloying elements and microstructure on the susceptibility of the welded HSLA steel to hydrogen-induced cracking and sulfide stress cracking, Mater. Sci. Eng. A. 507(1-2), 167–173 (2009) [CrossRef] [Google Scholar]
  5. A. Takahashi, H. Ogawa. Influence of microhardness and inclusion on stress oriented hydrogen induced cracking of line pipe steels, ISIJ Int. 36(3), 334–340 (1996) [CrossRef] [Google Scholar]
  6. Y.F. Sui, C.S. Yue, B. Peng, et al., Optimization of slag chemistry toward inclusion control for 28CrMo47 drill pipe steel based on viscosity and equilibration studies, Steel Res. Int. 87(6), 752–760 (2015) [CrossRef] [Google Scholar]
  7. N. Verma, P.C. Pistorius, R.J. Fruehan, et al., Transient inclusion evolution during modification of alumina inclusions by calcium in liquid steel: Part I. Background, experimental techniques and analysis methods, Metall. Mater. Trans. B. 42(4), 711–719 (2011) [CrossRef] [Google Scholar]
  8. M.M. Song, B. Song, S.H. Zhang, et al., Effect of heat input on microstructure and toughness of rare earth-contained C–Mn steel, J. Iron Steel Res. Int. 25(10), 1033–1042 (2018) [CrossRef] [Google Scholar]
  9. H. Zhang, C.S. Liu, Q. Lin, et al., Formation of plastic inclusions in U71Mnk high-speed heavy-rail steel refined by CaO-SiO2-Al2O3-MgO slag, Metall. Mater. Trans. B. 50(1), 459–470 (2019) [CrossRef] [Google Scholar]
  10. L.Z. Wang, S.F. Yang, J.S. Li, et al., Improving cleanliness of 95CrMo drill rod steel by slag refining, Metall. Mater. Trans. B. 47(1), 99–107 (2016) [CrossRef] [Google Scholar]
  11. H.Y. Mu, T.S. Zhang, R.J. Fruehan, et al., Reduction of CaO and MgO slag components by Al in liquid Fe, Metall. Mater. Trans. B. 49(4), 1665–1674 (2018) [CrossRef] [Google Scholar]
  12. Y. Ren, Y.F. Wang, S.S. Li, et al., Detection of non-metallic inclusions in steel continuous casting billets, Metall. Mater. Trans. B. 45(4), 1291–1303 (2014) [CrossRef] [Google Scholar]
  13. J.J. Wang, W.F. Li, Y. Ren, et al., Thermodynamic and kinetic analysis for transformation of oxide inclusions in solid 304 stainless steels, Steel Res. Int. 90(7), 1800600 (2019) [CrossRef] [Google Scholar]
  14. Y. Wang, M. Valdez, S. Sridhar Formation of CaS on Al2O3–CaO inclusions during solidification of steels, Metall. Mater. Trans. B. 33(4), 625–632 (2002) [CrossRef] [Google Scholar]
  15. S.K. Choudhary, A. Ghosh Mathematical model for prediction of composition of inclusions formed during solidification of liquid steel, ISIJ Int. 49(12), 1819–1827 (2009) [CrossRef] [Google Scholar]
  16. S.Y. Chen, X.D. Yue, G.C. Jin, et al., Behavior of inclusions in process of solid growth during solidification of Fe-0.15C-0.8Mn steel, J. Iron Steel Res. Int. 19(5), 17 (2012) [CrossRef] [Google Scholar]
  17. M. Suzuki, R. Yamaguchi, K. Murakami, et al., Inclusion particle growth during solidification of stainless steel, ISIJ Int. 41(3), 247–256 (2001) [CrossRef] [EDP Sciences] [Google Scholar]
  18. W. Chen, Y. Ren, L.F. Zhang, Large eddy simulation on the fluid flow, solidification and entrapment of inclusions in the steel along the full continuous casting slab strand, JOM. 70(12), 2968–2979 (2018) [CrossRef] [Google Scholar]
  19. I. Takahashi, T. Sakae, T. Yoshida, Changes of the nonmetallic inclusion by heating, Tetsu-to-Hagané 53(3), 350–352 (1967) [CrossRef] [Google Scholar]
  20. H. Shibata, T. Tanaka, K. Kimura, et al., Composition change in oxide inclusions of stainless steel by heat treatment, Ironmak. Steelmak. 37(7), 522–528 (2010) [CrossRef] [Google Scholar]
  21. C.S. Liu, H.W. Ni, S.F. Yang, et al., Interfacial reaction mechanism between multi-component oxides and solid alloys deoxidized by Mn and Si during heat treatment, Ironmak. Steelmak. 45(3), 195–203 (2018) [CrossRef] [Google Scholar]
  22. W. Yang, C.B. Guo, C. Li, et al., Transformation of inclusions in pipeline steels during solidification and cooling, Metall. Mater. Trans. B. 48(5), 2267–2273 (2017) [CrossRef] [Google Scholar]
  23. Y. Wang, W. Yang, L.F. Zhang, Effect of cooling rate on oxide inclusions during solidification of 304 stainless steel, Steel Res. Int. 90(7), 1900027 (2019) [CrossRef] [Google Scholar]
  24. H. Shibata, K. Kimura, T. Tanaka, et al., Mechanism of change in chemical composition of oxide inclusions in Fe–Cr alloys deoxidized with Mn and Si by heat treatment at 1473 K, ISIJ Int. 51(12), 1944–1950 (2011) [CrossRef] [Google Scholar]
  25. Y. Ren, L.F. Zhang, P.C. Pistorius, Transformation of oxide inclusions in type 304 stainless steels during heat treatment, Metall. Mater. Trans. B. 48(5), 2281–2292 (2017) [CrossRef] [Google Scholar]
  26. K.H. Kim, S.J. Kim, H. Shibata, et al., Reaction between MnO–SiO2–FeO oxide and Fe–Mn–Si solid alloy during heat treatment, ISIJ Int. 54(10), 2144–2153 (2014) [CrossRef] [Google Scholar]
  27. W. Choi, H. Matsuura, F. Tsukihashi, Changing behavior of non-metallic inclusions in solid iron deoxidized by Al-Ti addition during heating at 1473 K, ISIJ Int. 51(12), 1951–1956 (2011) [CrossRef] [Google Scholar]
  28. X.J. Shao, X.H. Wang, M. Jiang, et al., Effect of heat treatment conditions on shape control of large-sized elongated MnS inclusions in resulfurized free-cutting steels, ISIJ Int. 51(12), 1995–2001 (2011) [CrossRef] [Google Scholar]
  29. Y.P. Chu, W.F. Li, Y. Ren, et al., Transformation of inclusions in linepipe steels during heat treatment, Metall. Mater. Trans. B. 50(4), 2047–2062 (2019) [CrossRef] [Google Scholar]
  30. C.S. Liu, S.F. Yang, J.S. Li, et al., Solid-state reaction between Fe–Al–Ca alloy and Al2O3–CaO–FeO oxide during heat treatment at 1473 K (1200 °C), Metall. Mater. Trans. B. 48(2), 1348–1357 (2017) [CrossRef] [Google Scholar]
  31. C.S. Liu, S.F. Yang, J.S. Li, et al., The influence of FeO on the reaction between Fe–Al–Ca alloy and Al2O3–CaO–FeO oxide during heat treatment at 1473 K, Metals 7(4), 129 (2017) [Google Scholar]
  32. R. Kiessling, C. Westman, The MnS-CaS system and its metallurgical significance, J. Iron Steel Inst. 208(7), 699–700 (1970) [Google Scholar]
  33. B.J. Skinner, F.D. Luce, Solid solutions of the type (Ca, Mg, Mn, Fe)S and their use as geothermometers for the enstatite chondrites, Am. Miner. 56(7-8), 1269–1276 (1971) [Google Scholar]
  34. C.H. Leung, L.H.V. Vlack, Solubility limits in binary (Ca, Mn) Chalcogenides, J. Am. Ceram. Soc. 62(11-12), 613–621 (1979) [Google Scholar]
  35. D.Z. Lu, G.A. Irons, W.K. Lu, Calculation of CaS and MnS activities and their application to calcium treatment of steel, Ironmak. Steelmak. 18(5), 342–346 (1991) [Google Scholar]
  36. G. Xu, Z.H. Jiang, Y. Li, Formation mechanism of CaS-bearing inclusions and the rolling deformation in Al-killed, low-alloy steel with Ca treatment, Metall. Mater. Trans. B. 47(4), 2411–2420 (2016) [CrossRef] [Google Scholar]
  37. J.F. Xu, F.X. Huang, X.H. Wang, Formation mechanism of CaS–Al2O3 inclusions in low sulfur Al-killed steel after calcium treatment, Metall. Mater. Trans. B. 47(2), 1217–1227 (2016) [CrossRef] [Google Scholar]
  38. W. Yang, L.F. Zhang, X.H. Wang, et al., Characteristics of inclusions in low carbon Al-killed steel during ladle furnace refining and calcium treatment, ISIJ Int. 53(8), 1401–1410 (2013) [CrossRef] [Google Scholar]
  39. R.X. Piao, H.G. Lee, Y.B. Kang, Activity measurement of the CaS–MnS sulfide solid solution and thermodynamic modeling of the CaO–MnO–Al2O3–CaS–MnS–Al2S3 system, ISIJ Int. 53(12), 2132–2141 (2013) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.